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Preface

This book is an edited version of the review talks given in the Seventh Aegean
Summer School on Beyond Einstein’s Theory of Gravity, held in Parikia on Paros
Island, Greece, from 23 to 28 September 2013. The aim is to present an advanced
multiauthored textbook meeting the needs of both postgraduate students and young
researchers, in the fields of gravity, relativity, cosmology and quantum field theory.

In the past few years gravity theories were proposed which can be considered as
extensions of Einstein’s theory of gravity. Their main motivation was to explain the
latest cosmological and astrophysical data on dark energy and dark matter. Advances
in string theory also motivated the study of gravity theories in higher dimensions
and higher curvature. These theories introduced large scale modifications of General
Relativity giving a plethora of new gravity theories based mainly on various forms of
couplings of matter to gravity and to the introduction of high curvature terms in the
gravity action. Also they renewed the interest of the community to the long standing
problem if the graviton has a mass leading to a fast growing field of massive gravity.
Higher spin fields were also motivated leading to the study of higher spin gravity
theories. Finally, motivated by string theory, holography was applied to modified
gravity theories in a hope to understand perplexed strong coupled phenomena using
the gauge/gravity duality.

The selected contributions to this volume discuss the main ideas and models of
modified gravity. The long standing problem of massive graviton is discussed in
detail and the fast growing field of massive gravity is explored. Higher spin theories
and their connection to gravity are discussed and also Chern–Simons theories
are presented and their holographic perspective is explored. Finally, dynamical
processes like scattering amplitudes in gravity are discussed. The aim of this
volume is to introduce postgraduate students and young researchers to these very
challenging topics which constitute modifications of Einstein’s theory of gravity
and recently have attracted much interest.

In the first part of the book modifications of General Relativity at large distances
are discussed mainly due to various forms of matter coupled to gravity and to
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vi Preface

the introduction of higher curvature terms. The first chapter by Thomas Sotiriou
discusses gravity theories with non-minimally coupled scalar fields to demonstrate
the challenges and future perspectives of considering alternatives to general rela-
tivity and reviews the generalized scalar-tensor theories. Next, the second chapter
by Christos Charmousis reviews the recent progress in Lovelock and Horndeski
theories, discusses how the Kaluza-Klein reduction of Lovelock theory can lead
to scalar-tensor actions of the Horndeski type and presents black hole solutions of
these theories. The third chapter by Christof Wetterich discusses the equivalence
of models of modified gravity to couple quintessence and presents a modified
gravity model by introducing a field dependent Planck mass, discussing also its
cosmological implications. Finally the chapter by Shinji Tsujikawa introduces first
an effective field theory of cosmological perturbations, applies it to Horndeski
theories, and also it studies the equations of matter density perturbations based on
Horndeski theory in connection to observations.

In the second part of the book the basic ideas and models of massive gravity
are presented. In the first chapter by Claudia de Rham recent progress on mas-
sive gravity is reviewed. Special emphasis is paid to the ghost problem and its
resolution and also drawbacks on superluminalities and strong coupling and their
consequences are discussed. In the second chapter by Mikhail Volkov black hole
solutions in ghost-free bigravity and massive gravity are presented. The next chapter
by Eric Bergshoeff, Paul Townsend and collaborators introduces a wide class of
three-dimensional gravity models which can be put into “Chern–Simons-like” form
and then specializes these models to general massive gravity. Finally the last chapter
in this part of the book is by Andrew Tolley in which an overview of cosmological
solutions in extensions of massive gravity such as bi-gravity and quasi-dilaton
massive gravity is presented.

The last part of the book deals with high spin theories, Chern–Simons theories
and applications of holography to gravity theories. The first chapter is by Mikhail
Vasiliev in which higher-spin gauge theory is introduced with the emphasis given
on qualitative features of the higher-spin gauge theory and peculiarities of its space-
time interpretation. The chapter by Ricardo Troncoso and collaborators reviews
recent results in higher spin black holes in three-dimensional spacetimes, focusing
for simplicity on the case of gravity nonminimally coupled to spin-3 fields, which
nonperturbatively are described by a Chern–Simons theory. Next the chapter by
Jorge Zanelli presents a review of the role of Chern–Simons forms in gravitation
theories while the chapter by Daniel Grumiller and collaborators shows that
Chern–Simons theories in three dimensions being topological field theories may
have a holographic interpretation for suitable chosen gauge groups and boundary
conditions on the fields. The last two chapters of the book deal with holographic
aspects of gravity theories. The chapter by Marios Petropoulos discusses self-
duality in Euclidean gravitational set ups which allows holographically to relate the
boundary energy-momentum tensor and the boundary Cotton tensor and shows that
this relation results from a topological mass term for gravity boundary dynamics.
The chapter by Diana Vaman discusses stringy excitations of the graviton and using
the AdS/CFT correspondence studies their dynamics.
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Chapter 1
Gravity and Scalar Fields

Thomas P. Sotiriou

Abstract Gravity theories with non-minimally coupled scalar fields are used as
characteristic examples in order to demonstrate the challenges, pitfalls and future
perspectives of considering alternatives to general relativity. These lecture notes can
be seen as an illustration of features, concepts and subtleties that are present in most
types of alternative theories, but they also provide a brief review of generalised
scalar-tensor theories.

1.1 Introduction

The predictions of general relativity are in impressive agreement with experiments
whose characteristic length scale ranges from microns (�m) to about an astronom-
ical unit (AU). On the other hand, the theory is expected to break down near the
Planck length, lp � 1:6 � 10�35 m, and a quantum theory of gravity is needed
in order to adequately describe phenomena for which such small length scales are
relevant. There are really no gravitational experiments that give us access to the
region between the Plack length and the micron, so one has to admit that we have
no direct evidence about how gravity behaves in that region.1

It was perhaps much more unexpected that experiments probing length scales
much larger than the solar system held surprises related to gravity. General
relativity can only fit combined cosmological and galactic and extragalactic data

1However, one can infer certain properties of gravity indirectly. Matter couples to gravity and we
understand and probe the structure and behaviour of particles and fields at scales much smaller
than the micron, so if one is given a model that describes how gravity interacts with matter then
one could in principle gain insight into some aspects of gravity through the behaviour of matter.
Applying this logic to the quantum aspects of gravity has given rise to what is called Quantum
Gravity Phenomenology [1, 2]. The fact that the gravitational coupling is very weak poses a
particular challenge in such an approach, but smoking gun signals can still exist in certain models.
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well if there is a non vanishing cosmological constant and about six times more
Dark Matter—matter which we have so far detected only through its gravitational
interaction—than visible matter (see, for instance, [3]). Moreover, the value of
the cosmological constant has to be very small, in striking disagreement with any
calculation of the vacuum energy of quantum fields, and mysteriously the associated
energy density is of the same order of magnitude as that of matter currently [4, 5].
These puzzles have triggered the study of dynamical Dark Energy models, that come
to replace the cosmological constant.

Since general relativity is not a renormalizable theory, it is expected that
deviations from it will show up at some scale between the Planck scale and the
lowest length scale we have currently accessed. It is tempting to consider a scenario
where those deviation persist all the way to cosmological scales and account for
Dark Matter and/or Dark Energy. After all, we do only detect these dark component
through gravity. However, there is a major problem with this way of thinking.
There is no sign of these modifications in the range of scales for which we have
exhaustively tested gravity. So, they would have to be relevant at very small scales,
then somehow switch off at intermediate scales, then switch on again at larger scales.
It is hard to imagine what can lead to such behaviour, which actually contradicts
our basic theoretical intuition about separation of scales and effective field theory.
Nonetheless, intuition is probably not a good enough reason to not rigorously
explore an idea that could solve two of the major problem of contemporary physics
at once. This explain the considerable surge of interest in alternative theories of
gravity in the last decade or so.

Considering alternatives to a theory as successful as general relativity can be
seen as a very radical move. However, from a different perspective it can actually
be though of as a very modest approach to the challenges gravity is facing today.
Developing a fundamental theory of quantum gravity from first principle and
reaching the stage where this theory can make testable predictions has proved to
be a very lengthy process. At the same time, it is hard to imagine that we will
gain access to experimental data at scales directly relevant to quantum gravity any
time soon. Alternative theories of gravity, thought of as effective field theories, are
the phenomenological tools that provide the much needs contact between quantum
gravity candidates and observations at intermediate and large scales.

The scope of these notes is to briefly review the challenges one in bound to
face when considering alternatives to general relativity and discuss various ways to
overcome (some of) them. Instead of providing rigorous and general but lengthy
arguments, I will mostly resort to the power of examples. The examples will
be based on gravity theories with additional scalar degrees of freedom, so these
notes will also act as a brief review of generalised scalar-tensor theories and their
properties.

I have made extensive reference to various length scales in the arguments pre-
sented so far and one can rightfully feel uncomfortable talking about length scales
when it comes to gravity. The strength of the gravitational interaction has to do
with curvature and lengths are not even invariant under coordinate transformations.
Indeed, the Planck length can only be understood as a fundamental invariant length
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as the inverse of the square root of a fundamental curvature scale (which has
dimensions of 1 over a length square). In this spirit, it would be preferable to
talk about the range of curvatures in which we have tested gravity. Actually, the
experiments that span the range of lengths �m–AU all lie in a very narrow band
of curvatures. This is not so surprising, as they are all weak-field experiments.
This applies to binary pulsars as well as, even though the two companions that
form the binary are compact enough to exhibit large curvatures in their vicinity,
the gravitational interaction between them is still rather weak as the two stars are
not close enough to be in the region of strong curvature. Hence, if we think in
terms of curvatures, the range in which we have tested general relativity appears
even more restricted. Neutron stars and stellar and intermediate mass black holes
can exhibits curvatures which are many orders of magnitudes larger than the usual
weak-field experiments. It is, therefore, particularly interesting to understand the
structure of such objects and the phenomena that take place in their vicinity in
alternative theories of gravity. They are most likely the new frontier in gravitational
physics.

The rest of these notes is organised as follows: In Sect. 1.2 I lay out the
basic assumption of general relativity and very briefly (and intuitively) discuss
the consequences of relaxing these assumptions. The main scope of this section
is to give an idea of what alternative theories of gravity are about and what
kind of problems one usually faces when deviating from general relativity. In
Sects. 1.3 and 1.4 I attempt to support the statements made in the previous section
by considering characteristics examples from (generalised) scalar-tensor gravity
theories. Section 1.5 focuses on black hole physics in scalar-tensor gravity. The
final section contains conclusions.

1.2 General Relativity and Beyond

1.2.1 General Relativity: Basic Assumptions and Uniqueness

The action of general relativity is

S D 1

16�G

Z
d4x
p�g.R � 2�/C Sm.g��;  / ; (1.1)

whereG is Newton’s constant, g is the determinant of the spacetime metric g�� ,R is
the Ricci scalar of the metric, � is the cosmological constant, and Sm is the matter
action.  collectively denotes the matter fields, which are understood to couple
minimally to the metric.

Coupling the matter fields only to the metric and with the standard prescription
of minimal coupling guaranties that the Einstein Equivalence Principle is satisfied.
That is, test particles follow geodesics of the metric and non-gravitational physics
is locally Lorentz invariant and position invariant [6]. The reason why the last two
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requirements are satisfied once matter is minimally coupled is that in the local frame
the metric is flat to second order in a suitably large neighborhood of a space-time
point and Sm reduces to the action of the Standard Model. It is worth elaborating a
bit more on universality of free fall and how this is related to the form of the matter
action.

Consider the stress-energy tensor T�� of a pressure-less fluid, usually referred to
as dust. An infinitesimal volume element of such a fluid is as close as one can get
to a test particle. A rather straightforward calculation reveals that the conservation
of the stress-energy tensor, r�T�� D 0, implies that the 4-velocity of the fluid
satisfies the geodesic equation. That is, r�T�� D 0 implies that test particles follow
geodesics. On the other hand, the conservation of the stress-energy tensor can be
shown to follow from diffeomorphism invariance of the matter action Sm, provided
that the matter fields are on shell (they satisfy their field equations).

Let �� be the generator of a diffeomorphism and L� denote the associated Lie
derivative. Diffeomorphism invariance of the matter action implies

L�Sm D 0 : (1.2)

One can express the action of the Lie derivative in terms of functional derivatives of
Sm with respect to the fields, i.e.

ıSm

ıg��
L�g

�� C ıSm

ı 
L� D 0 : (1.3)

However, ıSm=ı D 0 are actually the field equations for  . So, on shell we have

ıSm

ıg��
L�g

�� D 0 : (1.4)

With the usual definitions for the stress-energy tensor and for the action of a Lie
derivative on the metric and after some manipulations, the above equation can take
the form

Z
d4x
p�gT��r��� D 0 : (1.5)

Finally, integrating by parts and taking into account that �� vanishes at the boundary
yields

Z
d4x
p�g.r�T��/�� D 0 : (1.6)

Since, �� is a generic diffeomorphism, Eq. (1.6) implies that r�T�� D 0.
In conclusion, diffeomorphism invariance of the matter action allows one to

link geodesic motion with the requirement that the matter fields are on shell. An
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important assumption here is that there is no field other than the metric that couples
to the matter fields  and at the same time enters the gravitational action as well.
This assumption is reflected in the condition that ıSm=ı D 0, i.e. all fields other
than the metric are on shell. If there were a field, say � entering both Sm and the
gravitational action, then ıSm=ı� D 0 would not actually be its field equation and
it would not be sensible to impose it as a condition by assuming that this field is on
shell.

One more point that is worth stressing is that in the arguments and calculations
shown above one only makes reference to the matter action. This implies that they
are not specific to general relativity. Instead, they will apply to any theory in which
the matter couples only to the metric through minimal coupling.

In conclusion, the requirement to satisfy the Einstein Equivalence Principle,
which has been experimentally tested to very high accuracy, pins down the matter
action and the coupling between matter and gravity. What is left is to argue why the
dynamics of g�� should be governed by the first integral in Eq. (1.1), known as the
Einstein–Hilbert action. Luckily, this requires less work as Lovelock has provided
us with a theorem [7, 8] stating that this is indeed the unique choice, provided that
the following assumptions hold true:

1. The action is diffeomorphism-invariant;
2. it leads to second-order field equations for the metric;
3. we are restricting our attention to four dimensions;
4. no fields other than the metric enter the gravitational action.

1.2.2 Less Assumptions Means More Degrees of Freedom!

We now consider what would be the implications of giving up one of the assump-
tions listed above. Let us start by relaxing the assumption that the gravitational
action depends only on the metric, and allow a dependence on a new field �.
Obviously, we would need to dictate how the gravitational action depends on �
in order to pin down the theory we are considering. However, as it should be clear
from the analysis in the previous section, if we were to allow this new field to enter
the matter action and couple to the matter fields then we would have violations of
the Einstein Equivalence Principle and signatures of this coupling would appear in
non-gravitational experiments. Constraints on universality of free fall, local Lorentz
symmetry in the matter sector, and deviations from the standard model in general
are orders of magnitude more stringent than constraints coming from gravitational
experiments. This explains why in the literature the common approach is to assume
that any new fields do not enter the matter action, or at least that the coupling
between these field and matter is weak enough to be irrelevant at low energies.
We will follow the same line of thought in what comes next. It should, however,
be clear that if there are new fields in the gravity sector at the classical level, then
one would expect that quantum corrections will force them to couple to the matter
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fields. Hence, a consistent theory should actually include a mechanism that naturally
suppressed the coupling between these new fields and matter. This is required in
order to theoretical justify what phenomenologically seems to be the only option.

A thorny issue is that of field redefinitions. Note that all of the assumptions,
conditions, and requirements discussed above, should in principle be posed as “there
exists a choice of fields where. . . ”. This becomes particularly relevant when one has
extra fields mediating gravity. Suppose, for instance, that � does couple to matter
but in such a way that one can introduce a new metric, Qg�� , which can be given
in closed form in terms of g�� and � (and potentially its derivatives), so that matter
actually couples minimally to Qg�� . Then, the whole theory can be re-written in terms
of Qg�� and � and the matter action will be the conventional one with matter coupling
only to a metric with minimal coupling.

What would happen if we kept the field content unchanged and we instead
relaxed any of the other three assumptions of Lovelock’s theorem?

We could consider more than four-dimensions. However, so far we experimen-
tally detect only 4. Moreover, as long as we are interested in low energies and a phe-
nomenological description, one is justified to expect that for any higher-dimensional
theory there exist a four-dimensional effective theory. If this theory is not general
relativity, then it will have to contradict one of the other three assumptions. Going
beyond the four-dimensional effective description will be necessary in order to
explain various characteristics of the theory which might seems ad hoc or unnatural
when one is judging naively based on the four-dimensional picture (e.g. why
the action has a certain form or why some couplings have specific values). But
the four-dimensional effective description should usually be adequate to discuss
low-energy phenomenology and viability.

If we were to allow the equation of motion to be higher than second order
partial differential equations (PDEs), then we would be generically introducing
more degrees of freedom. This can be intuitively understood by considering the
initial data one would have to provide when setting up an initial value problem in this
theory (assuming that an initial value problem would be well posed). For instance,
consider for simplicity a fourth order ordinary differential equation: to uniquely
determine the evolution one would need to provide the first 3 time derivatives as
initial data. So, a theory with higher order equation will generically have more
propagating modes. Increasing the differential order is actually quite unappealing,
as it leads to serious mathematical complications—higher-order PDEs are not easy
to deal with—and serious stability issue. These will be discussed shortly.

Finally, one could give up diffeomorphism invariance. However, it has been long
known that symmetries can be restored by introducing extra fields. This procedure is
known as the Stueckelberg mechanism, see [9] for a review. In Stueckelberg’s work
the new field was a scalar field introduced to restore gauge invariance in a massive
Abelian gauge theory. By choosing the appropriate gauge one does away with the
Stueckelberg field (it becomes trivial) but the theory is no longer manifestly gauge
invariant. The Stueckelberg mechanism can be generalised to other symmetries,
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and specifically to diffeomorphism invariance.2 Hence, one can choose to think of
theories that are not invariant under diffeomorphisms as diffeomorphism-invariant
theories with extra Stueckelberg fields.

In the previous section we demonstrated that diffeomorphism invariance has a
central role in relating energy conservation and geodesic motion to the require-
ment that matter fields are on shell. From this discussion it also follows that if
Stueckelberg fields are required in order to write a theory in a manifestly diffeo-
morphism invariant formulation, then these fields should not appear in the matter
action, as is the case for any field that coupled non-minimally to gravity.

To summarised, we have argued that irrespectively of which of the 4 assumption
of Lovelock’s theorem one chooses to relax, the outcome is always the same: one
ends up with more degrees of freedom. The name of the game in alternative theories
of gravity is, therefore, to tame the behaviour of these degrees of freedom.

Clearly, many of the statements made in this section where rather heuristics and
we relied heavily on the reader’s intuition. In Sect. 1.3 convincing examples from
scalar-tensor gravity that demonstrate all of the above will be presented.

1.2.3 Taming the Extra Degrees of Freedom

Consider a simple system of two harmonic oscillators, describe by the lagrangian

L D 1

2
Pq21 �

1

2
q21 C

1

2
Rq22 �

1

2
q22 : (1.7)

If we were to flip the sign of q21 in the lagrangian q1 would have to exhibit
exponential growth. If instead, we were to flip the sign of Pq21 , the corresponding
hamiltonian would not be bound from below. Having the wrong sign in front of
certain terms renders the system unstable, but luckily in simple systems such as
harmonic oscillators it is easy to know which sign to choose. In fact, coupling the
two oscillators minimally would not affect this choice. Things become significantly
more complicated though when one has degrees of freedom that couple non-
minimally. Imagine adding a term such as q21q

2
2 , f .q1/ Pq22 or Pq1 Pq2. It is no longer

obvious whether you system is stable or not.
The situation is no different in a field theory. Fields whose hamiltonian is

not bound from below are called ghosts and sensible theories are expected to be
free of them. At the perturbative level this means that excitation around a certain
configuration should have the right sign in front of the kinetic term. One also expects
that physical configurations are classically stable, i.e. all excitation around them

2Erich Kretschmann argued in 1917 that any theory can be put in a generally covariant form, which
led to a famous debate with Einstein. A covariant version of Newtonian gravity can be found in
[10].
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have real propagation speeds. A complication that is always present in alternative
theories of gravity is that the extra degrees of freedom are always non-minimally
coupled to gravity (else there would be matter fields by definition). So, when
constructing an action for a theory with a given field content it is nontrivial to judge
whether it will satisfy the stability criteria mentioned above. As a result, one of the
first calculations one does in every alternative theory of gravity is to check if all
excitations satisfy these criteria around flat space (or some maximally symmetric
space—the vacuum solution of the theory).

In Sect. 1.2.2 we mentioned that theories that lead to higher-order equations are
generically plagued by instabilities. These instabilities are essentially due to the
presence of ghosts. It has been shown by Ostrogradski in 1850 that non-degenerate
Lagrangians with higher-order derivatives generically lead to Hamiltonians that
are linear in at least one of the momenta [11]. Such Hamiltonians are not bound
from below. A detailed discussion can be found in [12]. Obviously, Ostragradski’s
instabilities make higher-order theories particularly unappealing. However, higher-
order theories which can be explicitly re-written as second-order theories with more
fields evade such instabilities. We will see an example of such a theory below.

Once stability issues have been addressed, and the behaviour of the new degrees
of freedom has been tamed, the next step is to find a mechanism that hides them in
regimes where general relativity is well tested and no extra degrees of freedom have
been seen, but still allows them to be present and lead to different phenomenology
in other regimes. How challenging a task this is and how inventive we have been
in order to circumvent the difficulties will be demonstrated by the examples from
scalar-tensor gravity presented in the next section.

It should be mentioned that a road less taken is to consider alternative theories
with non-dynamical extra degrees of freedom. In fact, one could circumvent
Lovelock’s theorem by considering a gravity theory where fields other than the
metric are present, but they are auxiliary fields, so that they do not satisfy dynamical
equation but can be instead algebraically eliminated. This way ones has the same
degrees of freedom as in general relativity and does not have to worry about
instabilities associated with new dynamical fields. However, such an approach is
not without serious shortcomings, see [13] for a discussion and references therein.
For the rest of these notes we will focus one theories with dynamical new degrees
of freedom, as most popular alternative theories of gravity fall under this category.

1.3 Scalar-Tensor Gravity

1.3.1 The Prototype: Brans–Dicke Theory

The action for Brans–Dicke theory is

SBD D 1

16�G

Z
d4x
p�g

�
'R � !0

'
r�'r�' � V.'/

�
C Sm.g��;  /; (1.8)
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where ' is a scalar field and !0 is known as the Brans–Dicke parameter. After some
manipulations, the corresponding field equations can take the form

R�� � 1
2
Rg�� D 8�G

'
T�� C !0

'2

�
r�'r�' � 1

2
g�� r	'r	'

�

C 1
'

�r�r�' � g���'� � V.'/
2'

g�� ; (1.9)

.2!0 C 3/�' D ' V 0 � 2V C 8�G T ; (1.10)

where � D r	r	 and a prime denotes differentiation with respect to the argument.
In its original formulation Brans–Dicke theory did not have a potential.

It is straightforward to see that in vacuo, where T�� D 0, the theory admits
solutions where with ' D '0 D constant, provided that '0 V 0.'0/ � 2V.'0/ D 0.
For such solutions the metric actually satisfies Einstein’s equations with an effective
cosmological constant V.�0/. So, one could be misled to think that, as long as V.'0/
has the right value, the predictions of the theory could be the same as those of
general relativity. For instant, the space-time around the Sun could be described by
such a solution, and then solar system constraints would be automatically satisfied.
What invalidates this logic is that the ' D '0 solutions are not unique. ' could
actually have a nontrivial configuration, which would also force the metric to deviate
for the corresponding solution of general relativity.

This is indeed the case for spherically symmetric solution that describe the
exterior of stars, and in particular the Sun. Consider for concreteness the case
where V D m2.' � '0/2. Performing a newtonian expansion one can calculate
the newtonian limit of the metric. The perturbations of the metric are

h00 D GMs

'0r

 
1 � 1

2!0 C 3exp

"
�
s

2'0

2!0 C 3mr

#!
; (1.11)

hij D GMs

'0r
ıij

 
1C 1

2!0 C 3exp

"
�
s

2'0

2!0 C 3mr

#!
; (1.12)

where Ms is the mass of the Sun. There is a Yukawa-like correction to the standard

1=r potential, with effective mass meff D
q

2'0
2!0C3m and range m�1

eff . The ratio of

the perturbations of the time-time component h00 over any space-space diagonal
component hijjiDj , which is also known as the 
 (Eddington) parameter is then
given by [14]


 � hijjiDj
h00

D
2!0 C 3 � exp

h
�
q

2'0
2!0C3mr

i

2!0 C 3C exp
h
�
q

2'0
2!0C3mr

i : (1.13)
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It is clear that in order for 
 to be close to 1, which is the value it has in general
relativity, either !0 ormeff should be very large. Indeed, in the limit where !0 !1
or m ! 1 the equation imply that ' ! '0 and the constant ' solutions with g��
satisfying Einstein’s equation become unique. Current constraints on 
 require that

 � 1 D .2:1˙ 2:3/ � 10�5 [15]. For m D 0, this constraint would require !0 to
be larger than 40;000, which would make the theory indistinguishable from general
relativity at all scales. For !0 D O.1/, the range of the Yukawa correction would
have to be below the smaller scale we have currently tested the inverse square law,
i.e. a few microns. But if this is indeed the case, then this correction will never play
a role at large scales.

The main message here is that weak gravity constraints are very powerful. It
seems very hard to satisfy them and still have a theory whose phenomenology
differs from that of general relativity at scales where we currently test gravity.
One would have to circumvent this problem in order to construct a theory which
is phenomenologically interesting.

1.3.2 Scalar-Tensor Theories

Scalar-tensor theories are straightforward generalisations of Brans–Dicke theory in
which !0 is promoted to a general function of '. Their action is

Sst D 1

16�G

Z
d4x
p�g

�
'R � !.'/

'
r�'r�' � V.'/

�
C Sm.g��;  / :

(1.14)

This is the most general action one can write for a scalar field non-minimally
coupled to gravity which is second order in derivatives of the scalar. It can, therefore,
be thought of as an effective field theory which captures, at some appropriate limit,
the phenomenology of a more fundamental theory that contains a scalar field. The
corresponding field equations are, after some manipulations

R�� � 1
2
Rg�� D 8�G

'
T�� C !.'/

'2

�
r�'r�' � 1

2
g�� r	'r	'

�

C 1
'

�r�r�' � g���'�� V.'/
2'

g�� ; (1.15)

Œ2!.'/C 3��' D �!0.'/r	'r	' C ' V 0 � 2V C 8�G T : (1.16)

Scalar-tensor theories have been extensively studied and we will not review them
here. See [16, 17] for detailed reviews. The behaviour of the theories in the weak
field limit will be no different than that of Brans–Dicke theory, though allowing !
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to be a function of ' will lead to a novel way of getting exciting phenomenology in
the strong gravity regime, as we will see shortly.

We have given the action and field equations of scalar-tensor theory in terms of
the metric that minimally couples to matter, g�� . This is referred to as the Jordan
frame. It is fairly common to re-write them in a different conformal frame, know as
the Einstein frame, in which the (redefined) scalar couples minimally to gravity but
it also couples to the matter.

The conformal transformation Og�� D ' g�� , together with the scalar field
redefinition 4

p
�'d� D p2!.'/C 3 d', brings the action (1.14) to the form

Sst D
Z
d4x

p
� Og
� OR
16�
� 1
2
Og��@��@�� � U.�/

�
C Sm.g��;  / ; (1.17)

where U.�/ D V.'/='2, Og�� is Einstein frame metric and all quantities with a hat
are defined with this metric. The field equations in the Einstein frame take the form

OR�� � 1
2
OR Og�� D 8�G T ��� C

8�G

'.�/
T�� ; (1.18)

O�� � U 0.�/ D
s

4�G

.2! C 3/T ; (1.19)

where

T ��� D r��r�� �
1

2
g��r	�r	� � U.�/g�� ; (1.20)

whereas T�� and T are the Jordan frame stress-energy tensor and its trace
respectively.

The fact that � couples minimally to Og�� in the Einstein frame makes calculations
much simpler in many cases, especially in vacuo, where the theory becomes general
relativity with a minimally coupled scalar field. One can use any of the two frames
to perform calculations but some care is needed when interpreting results that do
not involve conformally invariant quantities. The physical significance of the two
metrics, g�� and Og�� , should be clear: the former is the metric whose geodesics will
coincide with test particle trajectories, as it couples minimally to matter. The latter
is just a special choice which brings the action in a convenient form. See [18] and
references therein for more detailed discussions.

1.3.3 Hiding the Scalar Field, Part I

We will now briefly discuss some mechanisms that can hide the scalar field in the
weak field regime near matter but still allow the theory to deviate significantly from
general relativity in cosmology or in the strong gravity regime.
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The first and oldest of these mechanisms is present in theories were!.'/ diverges
for some constant value of ' [19, 20]. Consider theories without a potential. In
configurations where ! ! 1 one essentially ends up with a constant scalar and
metrics that satisfy Einstein’s equations. This follows intuitively by the analysis of
the newtonian limit of Brans–Dicke theory when !0 ! 1, or more rigorously by
inspecting the field equations or the action. It is more convenient and straightforward
to consider the Einstein frame. In the absence of a potential, Eq. (1.19) admits
� D �0 Dconstant solutions with !.�0/ ! 1 even inside matter.3 For such
solutions Eq. (1.18) reduce to Einstein’s equations (with a rescaled coupling inside
matter). Going back to the Jordan frame, such solutions correspond to ' Dconstant
with g�� satisfying Einstein’s equations.

A key difference with Brans–Dicke theory with very large !0 is that here !
diverges only in the specific configuration for the scalar, so one needs to check
under which circumstances such configurations are solution of the physical system
of interest. In other words, one has to check that ' will be dynamically driven into
this configuration in situations where one would like to recover general relativity.

It has been indeed shown in [19, 20] that there exist theories where in principle
both � D �0 and non-trivial � solutions exist for stars. Which of the two con-
figurations will be realised after gravitational collapse depends (roughly speaking)
on the compactness of the star. For ordinary stars, such as the Sun, the constant
scalar solution is the one realised. The metric describing their exterior is then the
same as in general relativity and this makes the theories indistinguishable from
the latter in the Solar system. For compact stars instead, such as neutron stars,
the non-trivial scalar configuration becomes energetically favourable and the metric
significantly deviates from the one general relativity would yield. Hence, the strong-
field phenomenology will be distinct from that of general relativity. The importance
of this result lies on the fact that it was the first demonstration that one can construct
a theory which agrees with general relativity in the weak field limit but still gives
distinct and testable predictions in the strong field regime. There is a very sharp
transition from the � Dconstant to the non-trivial � configurations as one increases
the compactness of the star, so the mechanism that causes this transition has been
dubbed “spontaneous scalarization” [19, 20].

This mechanism relies entirely on the functional form of !, which turned out to
be intimately related to how the scalar field is sourced by matter. There is a different
type of mechanism to hide the scalar field that relies on the potential V , or U ,
and is called the chameleon mechanism [21]. In terms of the newtonian limit of
Brans–Dicke theory that was given in Sect. 1.3.1 the chameleon mechanism can be
thought of as a dependence of the effective mass, and the corresponding range of
the Yukawa-like correction, on the characteristics of a given matter configuration.
As discussed earlier, when the effective mass gets large enough, the range of
the Yukawa-like correction becomes short enough to be negligible in any known
experiment. But if one wants the scalar field to have any effect in cosmology, for

3If there is a potential � D �0 solutions are only admissible if U 0.�0/ D 0 as well.
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example to account for dark energy, then the range of the correction should actually
be long. The dependence of the mass on the nearby matter configuration makes it
possible to have it both ways.

For a scalar field that experiences only self interactions one defines as the mass
the value of the second derivative of its potential at the minimum of the potential.
However, things are slightly more complicated for non-minimally coupled scalar
fields. It is easier to resort to the Einstein frame and consider Eq. (1.19). Then �’s
dynamics are governed by en effective potentialUeft D U.�/C.ln'/T=2 [asU 0

eft D
U 0.�/ C p

4�G=.2! C 3/T ]. By choosing U appropriately (the behaviour of !
is much less relevant) one can arrange that � have a very small mass when T is
small and a very large mass when T is large, as the term .ln '/T=2 clearly deforms
the potential. The most characteristic example is when choosing U � e�� and
! is a constant, so that the T -dependent deformation is linear in �. Without this
deformation the range of the force would be infinite. But the deformation introduces
a minimum that leads to a short range force.

There are two subtleties in the line of reasoning we just laid out, which are
sometimes not given enough attention in the literature. Firstly, we used the Einstein
frame, but the mass that determines the range of the Yukawa-like correction is
not actually the one associated with the effective potential of � in this frame
(neither the one defined as V 00.'0/ in the Jordan frame actually, hence the use of
meff in Sect. 1.3.1). However, one can show that the various masses are intimately
related [22]. Secondly, Solar system test are not really performed in a high density
environment but in vacuo, outside a high density matter configuration. On the other
hand, continuity of the scalar field profile implies that, even outside the star, there
will be a region for which the configuration will be influenced more by the interior
configuration through boundary conditions that by the asymptotic configuration. We
refer the reader to a recent review on the chameleon mechanism for a thorough
discussion [23].

A third mechanism for hiding the scalar field in the Solar system is the
symmetron mechanism [24]. Here both the form of ! and the form of the potential
are important. In the Einstein frame the potential U is assumed to have the form

U.�/ D �1
2
�2�2 C 1

4
	�4 : (1.21)

In the absence of matter U.�/ would then have a minimum at �0 D �=
p
	.

The value of the potential at the minimum is related to an effective cosmological
constant, which one can tune to the desired value by appropriately choosing � and
	. Assume now that ! has such a functional dependence on ' (and implicitly on �)
that in the presence of matter the effective potential would be

Ueff.�/ D �1
2
�2�2 C 1

4
	�4 C .1C �2

M2
/
T

2

D 1

2

�
T

M2
� �2

�
�2 C 1

4
	�4 C T

2
; (1.22)
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whereM is a characteristic mass scale, and

U 0
eff.�/ D ��2� C 	�3 C

�

M2
T ; (1.23)

For such a choice, !.� D 0/ ! 1. Provided that T=M2 > �2, � D 0 becomes
the minimum of the effective potential and Eq. (1.19) admits � D 0 solution in the
presence of matter.

In a certain sense, there is some similarity between the symmetron mechanism
and the models that exhibit spontaneous scalarization in compact stars discussed
earlier. In fact, one could see the symmetron mechanism as a cosmological scalariza-
tion. The way the symmetron mechanism works in a realistic matter configuration is
actually more complicated than the simplistic description given above. For example,
in a realistic matter configuration, the scalar has to smoothly change from being zero
inside the matter to obtaining its non-zero asymptotic value outside the matter. We
refer the reader to [24] for more details.

1.3.4 The Horndeski Action

The action of scalar-tensor theory in Eq. (1.14) is the most general action that is
quadratic in derivatives of the scalar, up to boundary terms. It is not, however,
the most general action that can lead to second order field equations for the
metric and the scalar. Horndeski has shown that the most general action with this
property is [25]

SH D
Z
d4x
p�g .L2 C L3 C L4 C L5/ ; (1.24)

where

L2 D K.�;X/; (1.25)

L3 D �G3.�;X/��; (1.26)

L4 D G4.�;X/RCG4X
�
.��/2 � .r�r��/2	 ; (1.27)

L5 D G5.�;X/G��r�r�� � G5X
6

�
.��/3 � 3��.r�r��/2 C 2.r�r��/3	 ;

(1.28)

the Gi are unspecified functions of � and X � � 1
2
r��r�� and GiX � @Gi=@X .

Scalar fields described by this action are also known as Generalised Galileons [26].
The name comes from a particular class of scalar theories in flat space which
enjoy Galilean symmetry, i.e. symmetry under � ! � C c�x� C c, where c� is
a constant one-form and c is a constant [27]. These fields are known as Galileons.
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A certain subclass of Generalised Galileons reduce to Galileons in flat space. But
galilean symmetry itself does not survive the passage to curved space [28] (it is local
symmetry) and the full Horndeski action does not reduce to the Galileon action in
flat space.4

Horndeski’s theory is intrinsically interesting as a field theory, as it contains
more than two derivatives in the action but still leads to second order equations.
That comes at the price of having highly nonlinear derivative (self-)interactions. It
is worth noting that, even though Horndeski’s actions includes second derivatives
of the fields, it avoids Ostrogradski’s instability because it does not satisfy the
non-degeneracy assumption.5

A more detailed discussion about the characteristics of the theory goes beyond
the scope of these lecture notes, so we refers the reader to [29] for a recent review.

1.3.5 Hiding the Scalar Field, Part II

The high degree of non-linearity in the scalar field equations of Hordenski’s
theory certainly makes them mathematically complicated. However, it does not
come without advantages. In regimes where these highly non-linear terms will
dominate over the standard Brans–Dicke-like terms the behaviour of the scalar
field will be significantly different from that of the Brans–Dicke scalar discussed
above. In fact, such theories can exhibit the “Vainshtein effect”: solutions of the
linearised version of the theory—in which the higher derivative terms would give no
significant contribution—can be very different from solutions of general relativity,
but fully non-linear solutions might be indistinguishable from those of the latter.
The term “Vainshtein effect” originates from massive gravity theory where the
mechanism was first demonstrated by Vainshtein in [30]. A detailed introduction
to the Vainshtein mechanism can be found in [31].

1.4 Scalar-Tensor Gravity in Disguise

In Sect. 1.2.2 it was argued that allowing for higher-order field equations or giving
up diffeomorphism invariance leads to more degrees of freedom. In this section
we provide two examples that support this claim. In both cases the new degree of

4The numbering of the terms in the Lagrangian, L2 to L5, is also a remnant of the original flat
space Galileons [27]. The index indicates there the number of copies of the field in each term. In
the Generalised Galileons the Li term contains i � 2 second derivatives of the scalar.
5The Einstein–Hilbert action also contains second derivatives of the metric and is degenerate, thus
avoiding Ostrogradski’s instability.
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freedom is a scalar field and this can be made explicit, either by field redefinitions,
or via the Stueckelberg mechanism.

1.4.1 f .R/ Gravity

The action of f .R/ gravity is

S D 1

16�G

Z
d4x
p�gf .R/C Sm.g��;  / ; (1.29)

where f is some function of the Ricci scalar of g�� . Variation with respect to the
metric g�� yields

f 0.R/R�� � 1
2
f .R/g�� � Œr�r� � g����f 0.R/ D 8�GT�� : (1.30)

Provide that f 00.R/ ¤ 0, in which case the theory would be general relativity, these
are clearly fourth-order equations in g�� . One would then expect the theory to suffer
from the Ostrogradski instability mentioned earlier.

Consider now the action

S D 1

16�G

Z
d4x
p�g Œf .�/C '.R � �/�C Sm.g��;  / : (1.31)

Variation with respect to ' yields � D R. Replacing this algebraic constraint
back into the action yields the action of f .R/ gravity. Hence, the two actions are
(classically) dynamically equivalent. If instead one varies with respect to � one gets
' D f 0.�/. Replacing this algebraic relation back in the action one gets another
dynamically equivalent action

S D 1

16�G

Z
d4x
p�g Œ'R � V.'/�C Sm.g��;  / ; (1.32)

where V.'/ � f .�/ � �f 0.�/ (V is essentially the Legendre transform of f ).
This theory is actually a Brans–Dicke theory with vanishing !0, also known as the
O’Hanlon action [32].

This simple exercise establishes that f .R/ gravity can be recast into the form
of a special Brans–Dicke theory, something that has been known for quite a
while, see e.g. [33]. It demonstrates both how higher-order theories propagate more
degrees freedom—in this case a scalar—and how such theories avoid Ostrogradski’s
instability when they can be recast into second-order theories with more degrees of
freedom.
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1.4.2 Hořava Gravity

Hořava gravity [34] is a theory with a preferred spacetime foliation. The action of
the theory is [35]

SH D 1

16�GH

Z
dTd3x N

p
h

�
L2 C 1

M2
?

L4 C 1

M4
?

L6

�
; (1.33)

where

L2 D KijK
ij � 	K2 C �.3/R C �aiai ; (1.34)

where T is the preferred time, Kij is the extrinsic curvature of the surfaces of
the foliation and K its trace, .3/R is the intrinsic curvature of these surfaces, N
is the lapse function, hij is the induced metric and h is the determinant of the
induced metric, ai � @i lnN , GH is a coupling constant with dimensions of length
squared and 	, �, and � are dimensionless couplings. Since the action is written in
a preferred foliation the theory does not enjoy invariance under diffeomorphisms.
It is still invariant under the subset of diffeomorphisms that respect the foliation,
T ! T 0 D f .T / and xi ! x0i D x0i .T; xi /. L4 and L6 include all possible
terms that respect this symmetry and contain up to four and six spatial derivatives
respectively.M? is a characteristic mass scale suppressing these higher order terms.

Hořava gravity has been proposed as a power-counting renormalizable gravity
theory and the presence of the higher-order terms in L4 and L6 is crucial in order
to have the right UV behaviour [34]. However, these terms will not concern us here,
as we intend to consider the low energy part of the theory, L2, as an example of a
gravity theory that does not respect diffeomorphism invariance. For a brief review
on the basic features of Hořava gravity see [36].

Consider now the action

S 0 D 1

16�G0

Z p�g.�R �M˛ˇ
��r˛u�rˇu�/d 4x (1.35)

where

M˛ˇ
�� D c1g˛ˇg�� C c2ı˛�ıˇ� C c3ı˛� ıˇ� C c4u˛uˇg�� ; (1.36)

ci are dimensionless coupling constants and u� is given by

u� D @�Tp
g	�@	T @�T

: (1.37)

This is a scalar-tensor theory where the scalar field T only appears in the action
in the specific combination of Eq. (1.37). Therefore, u� can be thought of as a
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hypersurface orthogonal, unit, timelike vector (as u�u� D 1). The theory can be
thought of as a restricted version of Einstein-aether theory [37,38] where the aether
is forced to be hyper surface orthogonal before the variation.

Now, following the lines of [39], one can observe that T always has a timelike
gradient, so it can be a good time coordinate for any solution. Then one can give
up some of the gauge freedom in order to re-write the theory in terms of this time
coordinate. This involves introducing a foliation of T Dconstant hyper surfaces, to
which u� will be normal, and re-writing the action in this foliation. Then u� D Nı0�,
where N is the lapse of this foliation, and action (1.35) takes the form

S 0 D 1

16�GH

Z
dTd3x N

p
h
�
KijK

ij � 	K2 C �.3/RC �aiai ;
�
; (1.38)

where

GH

G0 D � D
1

1 � .c1 C c3/ ; 	 D 1C c2
1 � .c1 C c3/ ; � D c1 C c4

1 � .c1 C c3/ :
(1.39)

Action (1.38) is clearly the infrared (L2) part of action (1.33), which means that the
initial action (1.35) is just the diffeomorphism invariant version of the infrared limit
of Hořava gravity. T can then be thought of as the Stueckelberg field one needs to
introduce in order to restore full diffeomorphism invariance in Hořava gravity. It is
clearly a dynamical field and in the covariant picture one can think of it as having
a nontrivial configuration which defines the preferred foliation in every solution.
When the theory is written in the preferred foliation, as in Eq. (1.33), then the scalar
degree of freedom is no longer explicit, but one can expect its existence because the
action has less symmetry.

1.5 Scalar Fields Around Black Holes

As already mentioned in the introduction, black holes and compact stars are of
particular interest in alternative theories of gravity as potential probes of the strong
gravity regime. Black holes in particular have the advantage of being vacuum
solutions, so one need not worry about matter, and of containing horizons, hence
they have a very interesting causal structure.

One could argue that the existence of extra degrees of freedom—in this case
a scalar field—in a gravity theory will generically lead to black hole solutions
that differ from their general relativity counterpart. They could then be used as
probes for deviation from Einstein’s theory, or even for the very existence of
scalar fields. However, there are “no-hair” theorems is scalar-tensor gravity that
suggest otherwise [40, 41]. In particular, according to these theorems stationary,
asymptotically flat black holes in the theories described by the action of Eq. (1.14)



1 Gravity and Scalar Fields 21

are identical to black holes in general relativity. This is because the scalar field is
forced to have a � D constant configuration in stationary, asymptotically flat space
times with a horizon. Quiescent astrophysical black holes that are the endpoints of
gravitational collapse are stationary. They are also asymptotically flat to a very good
approximation. Hence, one is tempted to believe that black holes in scalar-tensor
theories will be indistinguishable from black holes in general relativity.

Such an interpretation of the no-hair theorems would be misleading for several
reasons. First of all, a perturbed Kerr spacetime in a scalar-tensor theory would
differ from a perturbed Kerr spacetime in general relativity, a characteristic example
being the existence of a scalar mode in the gravitational wave spectrum [42].
Secondly, cosmological asymptotics do induce scalar hair in principle [43], though
the deviation from the Kerr geometry is unlikely to be detectable [44]. Finally,
astrophysical black holes tend to be surrounded by matter in various forms—
companion stars, accretion disks, or the galaxy as a whole. Equation (1.16) or (1.19)
imply that, in the presence of matter, constant scalar solutions are only allowed in
theories for which ! diverges at the minimum of the potential. This has been already
discussed in Sect. 1.3.3 (theories that exhibit “spontaneous scalarization” [19, 20]).
Hence, generically the presence of matter around the black hole will tend to induce
scalar hair and the pending question is to determine how important this effect might
be.

So, when put in astrophysical context, the no-hair theorems tell us that black
holes that are endpoints of collapse will be rather close to the Kerr solution and that
we can use perturbative techniques in order to study phenomena around them (which
provides an important simplification). They do not, however, imply that astrophys-
ical black holes in scalar-tensor gravity are indistinguishable from astrophysical
black holes in general relativity. In fact, it has been suggested that there might be
smoking gun effects associated with the scalar field in scalar-tensor theories. For
example, in [45] it has been shown that there exist floating orbits around Kerr black
holes in these theories, i.e. particles can orbit the black holes without “sinking”
into it even though gravitational radiation is emitted. The loss of energy of the
emission is balanced by loss of angular momentum of the black hole. In [46]
instead, it was shown that, in theories that admit a constant scalar configuration
in the presence of matter, black holes can undergo spontaneous scalarization or
exhibit instabilities related to superradiance and very large amplification factors for
superradiant scattering.

We now move on to black holes in generalised scalar-tensor gravity, i.e. theories
described by the Horndeski action in Eq. (1.24). There are no no-hair theorems
covering the complete class of theories. On the contrary, there are already known
black hole solutions that have non-trivial scalar field configurations in theories that
belong to this class, see e.g. [47]. It has been claimed in [48] that in the subclass of
theories in which the scalar enjoys shift symmetry, i.e. symmetry under � ! �C
constant, only trivial scalar configuration are admissible for static, spherically
symmetric and asymptotically flat black holes, and, hence, these black holes are
described by the Schwarzschild solutions. It has been argued in [49] that, when
valid, the no-hair theorem of [48] can straightforwardly be generalised to slowly
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rotating black holes. However, it has been also been shown there that the theorem
holds in the first place only if one forbids a linear coupling between the scalar field
and the Gauss–Bonnet invariant. Such a coupling is allowed by shift symmetry,
since the Gauss–Bonnet term is a total diverge. A term that contains this coupling is
implicitly part of the Horndeski action, even though the representation of Eq. (1.24)
does not make that manifest. One can impose symmetry under � ! �� in order
to do away with this term (together with various others in the action). However, the
conclusion is that the subclass of theories for which one can have a no-hair theorem
is more limited than originally claimed.

We close this section with a few remarks on black holes in Lorentz-violating
theories, since, as we argued above Hořava gravity can be re-written as a scalar-
tensor theory. One could question whether black holes can actually exist in this
theory, as well as in other Lorentz-violating theories, as one can have perturbations
that travel with arbitrarily high speed and could, therefore, penetrate conventional
horizons.6 However, it has been shown that a new type of horizon that shields its
exterior from any signal that comes from its interior, irrespectively of how fast
it propagates, can exist in theories with a preferred foliation, called the universal
horizon [50–53]. The existence of such a horizon implies that the notion of a black
hole can exist in Lorentz-violating theories. For a thorough discussion on this topic
see [54].

Conclusions
In these lecture notes I have attempted to highlight some interesting concepts,
pitfalls and subtleties that appear when one goes beyond general relativity.
Perhaps it is helpful to list the most important ones:

• Any attempt to modify the action of general relativity will generically lead
to extra degrees of freedom (carefully engineered exceptions can exist);

• These degrees of freedom may be manifest as extra dynamical fields or
may be implicit because of higher order equations or less symmetry;

• The actual number of degrees of freedom might be quite obscure in some
specific field representation;

• Taming the behaviour of these extra degrees of freedom is what construct-
ing viable and successful (in terms of some desirable phenomenological
signature) models is about;

• One should constantly be seeking for new constraints on deviations from
general relativity, and the strong gravity regime is particularly promising
in this respect.

(continued)

6Hořava gravity exhibits instantaneous propagation even at low energies [50], and on general
grounds one would expect the UV completion of any Lorentz violating theory to generically
introduce higher order dispersion relations.
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A brief review of gravity theories with an extra scalar degree of freedom
has been given and some of their basic features have been discussed. Even
though I touched upon virtually all such theories, these lecture notes do not
constitute a thorough review of the theories and their phenomenology. I have
simply selectively discussed specific aspects of each theory in an attempt to
provide useful examples for the points listed above.
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Chapter 2
From Lovelock to Horndeski’s Generalized
Scalar Tensor Theory

Christos Charmousis

Abstract We review and discuss some recent progress in Lovelock and Horndeski
theories modifying Einstein’s General Relativity. Using as our guide the uniqueness
properties of these modified gravity theories we then discuss how Kaluza-Klein
reduction of Lovelock theory can lead to effective scalar-tensor actions including
several important terms of Horndeski theory. We show how this can be put to
practical use by mapping analytic black hole solutions of one theory to the other.
We then elaborate on the subset of Horndeski theory that has self-tuning properties
and review a generic method giving scalar-tensor black hole solutions.

2.1 Introduction

General Relativity (GR) is a classical or effective theory of gravity which is based
on very solid mathematical and physical foundations. It agrees with overwhelming
accuracy local1 observational tests both for weak and strong gravity [1] including
laboratory tests of Newton’s force law. GR, is not only a very successful physical
theory. It is theoretically very robust and as it turns out mathematically a unique
metric theory. Indeed if one considers a theory depending on a massless metric and
up to its second derivatives endowed with a Levi-Civita connection then,

S.4/ D mPl
4

2

Z
d4x

q
�g.4/ ŒR � 2�� ; (2.1)

is the unique action giving equations of motion of second order in the metric field
variable. This theorem, as we will see, is a consequence of Lovelock’s theorem
[2] (see also [3, 4]). In other words, GR plus a cosmological constant is the

1Local distance scales range up to 30 odd astronomical units, size of the solar system, but also size
of typical binary pulsar systems. The astronomical unit is a rough earth to sun distance.
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unique gravity theory constructed out of a single massless metric with a Levi-Civita
connexion (which is also defined uniquely). This means that any other curvature
scalar would necessarily yield either trivial or higher order than second derivatives
in the field equations. Higher order than second, r2-derivatives, lead directly to
a theory with ghost vacua, clearly an important setback for any classical physical
theory [5]. The only other term evading this problem is the one associated to the
cosmological constant. We will encounter consequences of this very shortly.

As we emphasized GR is an effective metric field theory. As such we expect
Einstein’s theory to break down at very high energies (strong curvatures) close to
the Planck scale, m2

Pl D 1
16�G

, where higher order curvature terms can no longer be
neglected and are even dominant compared to the leading Einstein-Hilbert term.
What is maybe more surprising is that recent cosmological observations, point
towards the tantalizing possibility that GR may also be modified at very low energy
scales deep in the infra-red [6]. A tiny positive cosmological constant generates
an inversely proportional enormous cosmological horizon and can account very
simply for such a dark energy component. After all, as we saw in (2.1), it is
a mathematically allowed term in the metric action. However, the difference in
between cosmological and local scales corresponds to an enormous number, of
magnitude of 1015, in other words we are very deep in the infra red and physics
may well differ from scales where we control gravity observationally. Furthermore,
although a cosmological constant provides a phenomenologically correct and
economic way to put away the dark energy problem it suffers from a theoretical
short-coming, the cosmological constant problem [7]. Indeed, from very simple
field theory considerations, GR, from its founding strong equivalence principle
perceives all forms of matter in time and space including vacuum energy. Vacuum
energy gravitates just as does radiation or matter. The cosmological constant, for
example, receives zero point energy contributions from each particle species up
to the UV cut-off of the relevant QFT. These contribute to the total value of the
cosmological constant which has to be fine-tuned to almost zero by the arbitrary bare
contribution we saw above (2.1). This fact only gets worse once we realize that phase
transitions in the early universe will actually shift this value around, and again each
time some miraculous fine-tuning will be required to tune the overall cosmological
constant to its tiny but non-zero value we observe today. The “big” cosmological
constant problem is precisely how all these vacuum energies associated to the GUT,
SUSY, the standard model etc. are fined-tuned each time to zero by an exactly
opposite in value bare cosmological constant �bare appearing in (2.1) and being
the net result of the universe acceleration today. The unexplained small value of the
cosmological constant �now is then an additional two problems to add to the usual
“big” cosmological constant problem [7], namely, why the cosmological constant is
not cancelled exactly to zero and why do we observe it now. In a later section we
will see of such an attempt to classically2 evade this problem [9].

2For a interesting proposal tackling the cosmological constant problem including the crucial
radiative corrections see, [8].
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Although this is not really a scientific argument, one can make reference to a
historically parallel situation. At the advent of General Relativity, observational
evidence pointed towards shortcomings of Newton’s gravitational theory in the
‘strong gravity’ regime. Amongst these was the advance of the perihelion of
Mercury, which deviated from Kepler’s laws describing planetary motion. As such,
the existence of a small planet in an even closer orbit to the sun, Vulcan, was
hypothesized. Alternatively, the presence of an unknown substance, aether, was put
forward, mediating and slightly modifying the prediction of Kepler’s laws to account
for observational data. Indeed a simple and slight correction to the established laws
of the time could account correctly for the advance of the perihelion. The solution
to the puzzle was, however, not as simple or economic as initially considered. In
fact, it was only after the theory of GR was put forward that this slight difference
was accounted for as, rather, a fundamental modification of gravity theory. As
often in physics, a modified physical theory is attained upon reaching a critical
energy scale; here, the critical scale in question is the strong gravity field of the
sun applied to its closest planet. There is in recent times an observational parallel
to the above, in the context of type Ia supernovae explosions, pointing towards
an accelerating universe [6]. Friedmann’s laws, in order to remain valid, require
the addition of an as yet unknown dark energy component, which is the dominant
component in the Universe. The addition of a small cosmological constant gives
very good agreement with observational data and is the most economic (in terms of
additional degrees of freedom) phenomenological explanation of the acceleration
phenomenon. Given, however, the above example, it seems to us important to
entertain the following question: could it be that recent observations are pointing
towards a fundamental modification of gravity rather than a modification in the
unknown matter sector? Are novel observations indications of a new gravity theory
beyond GR? This question is even more compelling since we know that dark matter
is so far unaccounted for and in the ultraviolet GR needs to be modified anyway.
A second important point concerns the predictions and motivation of a modified
gravity theory. Indeed, as we argued above, the initial conditions calling for a
modified gravity theory are in order to account on the one hand for the late-time
acceleration of the universe and to provide on the other hand a well-defined limit
at local scales where the theory at hand should be indistinguishable from GR. This
is of course an important and difficult initial step that provides a filter for possible
theories under consideration, but this is not all. Since observations can be accounted
for by a small cosmological constant put in by hand, one needs to go further in
order to make new accurate predictions theoretically. These novel predictions are
the real motivation in a modified theory of gravity. Indeed, General Relativity’s great
successes are not the explanation of the advance in the perihelion of Mercury or its
classical limit to Newtonian theory, but rather, completely novel ideas and solutions
stemming from the theory itself, such as black holes, Big Bang inflationary theory
and so forth.
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So how do we go about modifying such a robust theory such as GR (see the
review [10])? Not surprisingly it is extremely hard both observationally but also
theoretically, the windows of modification are rather narrow. This is at the same
time fortunate because at the end not there are not too many possibilities left
over. In rather loose terms following (2.1) and not breaking some fundamental
symmetry like Lorentz invariance (see for example [11]), there are four at least
routes emanating from a Lagrangian formulation. First, suppose we keep the single
massless metric character of the theory. Then inevitably we have to consider higher
dimensions. We will show that the relevant theory is then Lovelock theory (see
for example [12]). Secondly suppose we stick to 4 space-time dimensions. Then
inevitably we consider the existence of additional fields, in other words we add
novel gravitational degrees of freedom in four dimensional space-time. Here the
prototype is scalar-tensor theory and we know its most general form, Horndeski
theory [13]. We will study basics of this theory here. All the terms present in
Horndeski theory have been shown to be originating from Galileons i.e. scalar tensor
terms having Gallilean symmetry in flat space-time [14] and the latter equivalent
theory to Horndeski has been elegantly given for curved space-time in [15]. Thirdly
we can consider that the elementary particle mediating spin 2 gravity, the graviton,
has a finite range of application. In other words it is not a massless field but has some
(small) mass. This is the theme of massive gravity [16] which will also be covered in
later lectures. Lastly we can consider the possibility of allowing for other geometric
constructions such as a differing connexion than that of Levi-Civita. This allows
for torsion i.e. non zero parallel transport of scalars (rather than vectors) or first
order formalism, Palatini formalism (see for example [17]). These four directions
are not independent of each other in fact often they are related and it is useful to use
information from one to the other. We will give such relations during these lectures.
We will discuss in fact Lovelock and Horndeski theory and relate the two via the
Kaluza-Klein formalism.

Using as our guide uniqueness theorems we will discuss certain elements of
Lovelock and Horndeski theory. We will see in what sense these theories are
unique. We will focus throughout on recent elements of Lovelock theory that we
will be using in relation to Horndeski theory. We will omit some basic properties
diverting the interested reader to [12]. We will then go on to discuss Horndeski
theory which is the most general scalar-tensor theory in four dimensions. We will
then move on to review some black hole solutions of Lovelock theory and see how,
by toroidal Kaluza-Klein reduction we can construct four dimensional scalar-tensor
black holes. In this way we will establish a clear and practical connection in between
Lovelock and Horndeski theory. In the fifth section we will discuss the cosmological
constant problem and define a theory which is a subset of Horndeski theory and
has interesting self-tuning properties. This theory dubbed fab four [9], will at least
classically provide a partial solution to the big cosmological constant problem. We
will then sketch a recent and relatively simple way to obtain black hole solutions in
such scalar-tensor theories [18].
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2.2 The Lovelock and Horndeski Uniqueness Theorems

2.2.1 Lovelock Theory

Our purpose in this lecture is to present Lovelock theory in relation to Horndeski
theory. To this end it is mostly sufficient to truncate Lovelock theory to what is
usually called Einstein-Gauss-Bonnet (EGB) theory in the literature. Unlike the
name suggests, this is the five or six dimensional version of Lovelock theory
originally discussed by Lanczos [3]. Let us start with the uniqueness theorem
defining Lovelock theory and stick to six dimensions in order to fix notation. The
five dimensional theory is identical. Consider L D L .M ; g;r;r2/where .M ; g/

is a six dimensional locally differentiable Lorentzian manifold without boundary3

and r is the Levi-Civita metric connexion over M . The field equations obtained
upon metric variation of the action,

S.6/ D M.6/
4

2

Z q
�g.6/

h
R � 2�C ˛ OG

i
; (2.2)

are unique and admit the following properties:

• they depend on a symmetric two-tensor EAB

• the equations of motion are second-order PDE’s with respect to the metric field
variables

• satisfying Bianchi identities.

Here, M.6/ is the fundamental mass scale in six-dimensional spacetime, OG is the
Gauss-Bonnet density reading,

OG D RABCDR
ADCB � 4RABR

AB CR2 ; (2.3)

and� is the cosmological constant. The field equations in vacuum are

EAB D GAB C�gAB C ˛HAB D 0 ; (2.4)

where GAB stands for the standard Einstein tensor. Uppercase Latin indices will
refer to six-dimensional coordinates whereas Greek indices will always refer to
four dimensional space-time. We have also introduced the Lanczos or second order
Lovelock tensor,

HAB D gAB

2
OG � 2RRAB C 4RACR

C
B C 4RCDR

C D
A B � 2RACDER

CDE
B : (2.5)

3The result depicted here is easily extended to manifolds with boundaries [12].
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Naturally, the Lanczos tensor is also divergence free, rAHAB D 0. It is important
to note that, just like GR in four dimensions, i.e. under the same set of hypotheses,
EGB theory is the unique and most general metric theory with second order PDE’s
in five or six space-time dimensions. This is a non-trivial statement since the terms
appearing in the action already contain second order derivatives. In a moment we
will see that in higher than six dimensions this property is generalized by adding the
relevant higher order Lovelock terms. Furthermore in four dimensions the tensor
(2.5) is identically zero. Therefore we can note as a prelude that Lovelock theory
is the unique massless metric theory in arbitrary dimensions identical to GR with a
cosmological constant in four dimensional spacetime.

Before moving on it is useful to discuss some tensorial properties. The Lanczos
tensor (2.5) can be elegantly written (in arbitrary dimension) using the following
rank four tensor that will be useful to us later on,

PABCD D RABCD CRBC gAD �RBD gAC �RAC gBD CRAD gBC

C1
2
R gAC gBD � 1

2
R gBC gAD; (2.6)

as

HAB D �2PACDERB
CDE C gAB

2
OG : (2.7)

The 4 index tensor PABCD has several interesting tensorial properties. For a start it
is divergence free (in all indices) since Bianchi identities of the curvature tensor are
simply written as rDPABCD D 0. It has the same index symmetries as the Riemann
curvature tensor. Its bi-tensor obtained by tracing two of its non-consecutive indices
yields

PB
ACB D .D � 3/GAC; (2.8)

the Einstein tensor. In fact divergence freedom of the Einstein tensor can be seen to
originate from this relation. In a nutshell, one can say that PABCD is the curvature
tensor whose bi-tensor is the Einstein tensor, just as the Ricci tensor is the bi-tensor
of the Riemann tensor. A last interesting property is that a metric is an Einstein
space, RAB D gAB

D
R, if and only if PABCD D RABCD.

In four dimensions, the P��� tensor is even more very special. Indeed it has all
the above properties but, additionally it can be pictured in a very similar way to the
Faraday tensor in electromagnetism,

? F�� D 1
2
���� F

� (2.9)

In analogy here,P��� is a 4 tensor, and coincides with the double dual (i.e. for each
pair of indices) of the Riemann tensor defined as,

P��
� D .?R?/��� :D �1

2
��	� R	�

�� 1

2
�����; (2.10)
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where ���� is the rank 4 Levi-Civita tensor. Finally since in four dimensions we
have that H�� D 0 we obtain the Lovelock identity,

P˛��Rˇ
�� D g˛ˇ

4
OG (2.11)

which will be useful to us later on (see [19] for extensions).
In order to define the generic Lovelock densities one can use the elegant language

of differential forms [12]. Alternatively we take the route taken by Lovelock
using the generalized Kronecker delta symbols; the same route taken later on by
Horndeski,

ı
A1:::Ah
B1:::Bh

D

ˇ̌
ˇ̌
ˇ̌
ˇ

ı
A1
B1
: : : ı

A1
Bh

:::
:::

ı
Ah
B1
: : : ı

Ah
Bh

ˇ̌
ˇ̌
ˇ̌
ˇ

(2.12)

D hŠıA1ŒB1 : : : ı
Ah
Bh�

(2.13)

which is antisymmetric in any pair of upper or lower indices. In fact we have
ı
A1:::Ah
B1:::Bh

D �B1:::Bh �
A1:::Ah with respect to the Levi-Civita symbols. Once this has

been digested the Lovelock densities are the complete contraction of the above with
the Riemann curvature tensor,

L.h=2/ D 1

2h
ı
A1A2:::Ah
B1B2:::Bh

R
B1B2

A1A2
: : : R

B.h�1/Bh
A.h�1/Ah

(2.14)

As such we can check that L.1/ is the Einstein-Hilbert term whereas L.2/ is the
Gauss-Bonnet combination. This immediately means that for h > D all Lovelock
densities vanish. Therefore the Lovelock Langrangian is given by,

L D
kX
hD0

chLh (2.15)

where k D Œ.D�1/=2�. The case h D D is quite special because then the Lovelock
density is a topological one. Indeed we can query what is special about Lovelock
densities. The answer lies in differential geometry (see for example [20]). One can
trace the origin of such terms in the early works of Gauss who measuring geodesic
distances noted that scalar (Gauss) curvature of two dimensional surfaces depended
only on the first fundamental form, in other words the intrinsic metric of the surface
and its derivatives. This was the basis of what he called the Egregium theorem;
scalar curvature (unlike other extrinsic curvature components) does not depend on
the variation of the normal vector field on the surface i.e. on how the surface is
embedded in three dimensional space. Then later on Euler in his work on surface
triangulations noted that two dimensional surfaces can be topologically classified
by their “Euler” number, �: �ŒM � D 2 � 2h where h is the number of topological
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handles. So one can take an arbitrary surface with no boundary and continuously
deform it to a sphere, a torus a double torus and so on.4 This completely classifies
topologically two dimensional surfaces. In other words all topological properties of
two dimensional surfaces can be understood or characterized by their Euler number.
Gauss and Bonnet essentially related this topological number to a differentiable
geometric quantity, the scalar curvature, resulting in the celebrated relation,

�ŒM2� D 1

4�

Z
M
R: (2.16)

The Gauss-Bonnet theorem on surfaces has nothing to do with the Gauss-Bonnet
term given above (2.3). For our purposes the above Gauss-Bonnet relation means
that the Einstein-Hilbert term is in two dimensions is a topological invariant i.e.
the Einstein tensor in two dimensional space-time is identically zero. This analogy
goes through for all Lovelock terms as a corollary to the works of Chern [21]
who generalized the theorem of Gauss and Bonnet to higher dimensions finding
the relevant higher order curvature scalars. For example we have,

�ŒM4� D 1

32�2

Z
M

OG (2.17)

and thus the Lanczos or Gauss-Bonnet density is a topological invariant in four
dimensions whose integral is the generalised Euler or Chern topological number.
Beware this does not mean that the Gauss-Bonnet scalar is zero or constant in four
dimensions. It means that the Lanczos density is identically zero H�� D 0 as we
admitted earlier.

Dimensionally extending the Chern scalar densities we obtain the Lovelock
densities (2.14) i.e. just those densities whose variation leads to second order
field equations. Any higher order derivatives present in the variation of Lovelock
densities conveniently end up as total divergent terms and thus do not contribute to
the field equations. In a similar way for example, in seven or eight dimensions, the
six-dimensional Euler density will be promoted to a Lovelock density of third power
in the curvature tensor and so forth. This explains the nice and unique properties of
the Lovelock densities and Lovelock theory in general. For more details the reader
can consult [12].

2.2.2 Horndeski Theory

So much for the moment concerning higher dimensional metric theories. In four
space-time dimensions we know that the unique classical metric theory is GR with

4When a surface has a boundary an analogous result holds.
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a cosmological constant. Hence any four dimensional modification of gravity will
have to involve some other non-trivial field. The simplest of cases is when this extra
field is a scalar. The prototype of scalar tensor gravity is Brans-Dicke theory [22]
which has been studied extensively throughout the years (see [23] and references
within). We should note that in the class of scalar-tensor theories fall also other
modified gravity theories like f .R/ or f . OG/ which [24] are just particular scalar-
tensor theories in disguise. Furthermore other interesting GR modifications such as
bigravity or massive gravity theories [16] admit scalar tensor theories as particular
limits, for example the decoupling limit for massive gravity [25]. Hence scalar
tensor theories are a consistent prototype of GR modification and their important
properties are expected in some form, in other consistent gravity theories. Hence
the particular recent interest in scalar-tensor theories concerning modification of
gravity. So in this section we reiterate the question: what is the most general scalar
tensor theory in four dimensional space-time yielding second order field equations?
The answer has been given by Horndeski a long-time ago [13] but has remained
unnoticed since only recently [9], and states a similar theorem to that of Lovelock
for four dimensional scalar-tensor theories. Consider a single scalar field � and a
metric g�� as the gravitational degrees of freedom of some Lorentzian manifold
endowed with a Levi-Civita connection. Consider a theory that depends on these
degrees of freedom and an arbitrary number of their derivatives,

L D L .g��; g��;i1 ; : : : ; g��;i1:::ip ; �; �;i1 ; : : : ; �;i1:::iq / (2.18)

with p; q � 2. The finite number of derivatives signifies that we have again an
effective theory since we have a finite number of degrees of freedom. Here just like
in usual Brans Dicke theory we consider that matter couples only to the metric and
not to the scalar field thus fixing the metric and the frame as the physical one. In
this frame the metric will continue to verify the weak equivalence principle. In a
nutshell the metric in question can always be put locally in a normal frame where
by definition the Christophel symbols are identically zero. This frame is locally
equivalent to an inertial frame. The Hornedski action can be written in such a way
to involve only second derivatives and reads,

LH D �1.�; /ı˛ˇ
���r�r˛�R ��
ˇ
 � 4

3
�1;.�; /ı

˛ˇ

���r�r˛�r�rˇ�r�r
�

C�3.�; /ı˛ˇ
���r˛�r��R ��
ˇ
 � 4�3;.�; /ı˛ˇ
���r˛�r��r�rˇ�r�r
�

CŒF .�; /C 2W.�/�ı˛ˇ��R ��

˛ˇ � 4F.�; /;ı˛ˇ��r˛�r��r�rˇ�

�3Œ2F.�; /;� C 4W.�/;� C �8.�; /�r�r�� C 2�8ı˛ˇ��r˛�r��r�rˇ�
C�9.�; /;

 D r��r��; (2.19)
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The action (2.19) is rather general and depends on four arbitrary functions �i .�; /,
i D 1; 3; 8; 9 of the scalar field � and its kinetic term denoted as . Furthermore,

F; D �1;� � �3 � 2�3; (2.20)

with W.�/ an arbitrary function of �, which means we can set it to zero without
loss of generality by absorbing it into a redefinition of F.�; /. According to
Horndeski’s theorem, [13], the action (2.19) is the unique5 action whose variation
with respect to the scalar and metric yields second order field equations and Bianchi
identities. In his original work, Horndeski makes just like Lovelock, systematic use
of the anti-symmetric Kronecker deltas (2.12). The equations of motion are obtained
by variation of the metric and scalar field, are parametrized by the arbitrary functions
�i .�; / and read respectively,

E �� D 1
2
T ��; E� D 0 (2.21)

where T �� D 2p�g
ıSm
ıg��

is the matter energy-momentum tensor. The tensor E �� is
divergent free. A rather more intuitive and economic way of obtaining the Horndeski
action is given in terms of the general Galileon covariant action [15] and reads,

LDGSZ D K.�; / �G3.�; /r2� CG4.�; /RCG4;
�
.r2�/2 � .r�r��/2

	

CG5.�; /G��r�r�� � G5;
6

�
.r2�/3 � 3r2�.r�r��/2

C 2.r�r��/3
	

(2.22)

In this version it is far easier to recognize subsets of this theory, GR, Brans-
Dicke, K-essence etc. and to figure out the most common Galileon terms. Again
the theory depends on four free potentials. It was shown in [26] that in four
dimensions Horndeski’s theory is equivalent to the generalised galileon theory with
the potentials given by,

K D �9 C 
Z 

d0 ��8;� � 2�3;��� (2.23)

G3 D 6.F C 2W /;� C �8 C 4�3;� �
Z 

d0 ��8 � 2�3;�� (2.24)

G4 D 2.F C 2W /C 2�3 (2.25)

G5 D �4�1 (2.26)

5In the action one can always add terms that can be written as a total divergence. Therefore the
term “unique action” refers to the unique class of equivalence which is in turn defined modulo
total divergence terms. In other words two actions are equal if and only if they are in the same class
of equivalence or they differ only by a totally divergent term.



2 From Lovelock to Horndeski’s Generalized Scalar Tensor Theory 35

The uniqueness proof by Horndeski is quite technical and can be found in his
original paper. Here we simply sketch its important steps. The proof is based on
the property relating the metric and scalar field equations,

r�E�� D 1
2
E�r�� (2.27)

This is of course an identity and shows explicitly that the scalar field equation results
from the metric equations of motion as a Bianchi identity. Now starting from (2.18)
and requiring that E�� and E� have second at most derivatives automatically means
that this will also have to hold for r�E�� . In general if E�� is of second order this is
not true forr�E�� but here it is required from (2.27). So Horndeski starts by finding
the most general symmetric, second order 2-tensorA�� whose divergencer�A�� is
also of second order. This places constraints on the form of A�� leaving a solution
parametrized with ten free functions. These tensors include of course E�� but not all
of them verify (2.27). Finally then Horndeski imposes (2.27) on the former family.
This leaves him with four free functions at the end giving his final result (2.19).

Now we have at hand the general scalar-tensor and higher dimensional metric
gravity framework we will move on to see some of their solutions and how the
theories are in fact related in practical terms. We will in particular use known
solutions from Lovelock theory in order to construct Horndeski solutions.

2.3 Seeking Exact Solutions in Lovelock Theory

One of the nice characteristics of Lovelock theory is that despite its additional
technical difficulties related to the higher order nature of the theory, certain
uniqueness black hole theorems of GR remain valid; at least under some weaker
hypotheses. In particular, a generalization of Birkhoff’s theorem remains true apart
from a case of fine tuning of coupling parameters6 [28]. Let us review the higher
dimensional version of this result, for this will lead us to some relatively simple yet
interesting solutions where Lovelock theory even circumvents problems of higher
dimensional general relativity. The solutions we will consider will also have a nice
application to Galileon/Horndeski theories leading us to black hole solutions for
four dimensional scalar tensor theories.

The Birkhoff theorem states that, in four dimensions, any spherically symmetric
solution to Einstein’s equations in the vacuum is necessarily locally static. In other
words there exists a local time like Killing vector. This leads to the celebrated
Scharszchild metric as the unique GR solution of spherical symmetry in vacuum.

6The special relation between the coupling parameters corresponds to the strong coupling limit
of EGB-literally the case where the Gauss-Bonnet term is of maximal relative strength to the
Einstein-Hilbert term and gives a very special theory with enhanced symmetries, usually referred
to as Chern–Simons theory (see the nice review [27]).
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The theorem is not modified when one includes a negative or positive cosmological
constant but the solution itself is slightly more general. Indeed a negative cosmologi-
cal constant allows also for exotic horizon topologies of flat or hyperbolic geometry.
The general solution of the Einstein field equations with a cosmological constant in
D D 4 dimensions assuming a constant curvature 2-space (rather than a 2-sphere)
reads,

ds2 D �V.r/dt2 C dr2

V .r/
C r2

�
d�2

1 � ��2 C �
2d�2

�
(2.28)

where the constant .t; r/ sections are two-dimensional constant curvature spaces
parametrized by normalized curvature � D 0;˙1. For linguistic simplicity we will
call the surfaces of constant .t; r/, horizon sections, preluding the presence of a
black hole. The lapse function in (2.28) reads, V.r/ D � � �

3
r2 � 2M

r
. Note then

that since the metric is static, zeros of V D V.r/ correspond to Killing horizons and
exist for � < 0 even when � D 0 or � D �1. This can be explicitly checked by
going to an Eddington-Finkelstein chart,

v D t ˙
Z

dr

V.r/
(2.29)

These black holes are often called topological due to the fact that special identifi-
cations have to be made in order for the horizon to be compact [29]. For � � 0

only the spherical topologies give regular solutions with the presence of an extra
cosmological horizon. So much for four dimensional GR with a cosmological
constant.

In higher, D dimensional, GR Birkhoff’s theorem remains valid not only for
constant curvature sections, but also for horizon sections which are Einstein spaces
[30]. Substituting the constant curvature surface of the horizon sections with a .D�
2/-dimensional Einstein manifold will not alter locally the black hole lapse function
and the general solution is static. The structure of space-time locally7 transverse to
the horizon sections is in this way not affected by the details of the internal geometry,
as long as the latter continues to be an Einstein space. In particular the horizon
structure is the same. To picture this let us take a particular example: consider the,
for example, six dimensional solution,

ds2 D �V.r/dt2 C dr2

V .r/
C r2

�
f ./d�2 C d2

f ./
C 2d˝2

II

�

where f ./ D 1 � �


. Hence the horizon sections in four dimensions are given

by a Euclidean Schwarzschild black hole obtained by Wick rotating the time
coordinate of the original four dimensional black hole. The metric (2.30) is a valid

7We will see that when the horizon sections carry non-zero curvature there is a global change in
the topology of the solution related to the presence of a solid angle deficit. This will end up having
important consequences that we will discuss in detail later with the solution at hand.
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six dimensional solution since the horizon sections are Ricci flat. On the hand we
can consider a second solution of the form,

ds2 D �V.r/dt2 C dr2

V .r/
C r2dT2IV

with now toroidal horizon sections, i.e. a locally flat four dimensional metric. In both
cases we have the same lapse function V.r/ D k2r2� m

r3
independently whether our

horizon is of flat or Euclidean Schwarzschild geometry (which is of course Ricci flat
but has non zero Weyl curvature)-Ricci flatness of both the horizon sections means
that � D 0 for the lapse function V.r/. The former exotic black holes often have
classical instabilities [31] in a similar fashion to those of the black string [32]. In
fact black string metrics can be Wick rotated to a subclass of metrics with exotic
horizons. The exotic horizon section in this case is nothing but the Euclidean version
of four dimensional Schwarzschild (as in the example above). We see therefore
that in higher dimensional GR a certain kind of degeneracy appears in the possible
solutions which are not completely fixed by the symmetries and the field equations.
Therefore one could entertain the possibility that the additional unphysical exotic
black holes are just an artifact of not considering the full classical gravity theory
in higher dimensions. Indeed we will provide clear indications that this is the case
at least for six dimensional Lovelock theory in the sense that the possible horizon
geometries will be seen to be far more constrained [33] and asymptotically non-
trivial.

So how are these results translated in Lovelock theory? In order to answer this
question [34], we start by considering an appropriate anzatz for the metric and stick
to D D 6 dimensions and EGB theory. We have a transverse 2-space, which carries
the timelike coordinate t and the radial coordinate r , and an internal 4-space, which
is going to represent the horizon sections of the possible six-dimensional black
holes. The metric of the internal four dimensional space we note h�� and we take
to be an arbitrary metric of the internal coordinates x�; � D 0; 1; 2; 3 only. We
furthermore impose that the internal and transverse spaces are orthogonal to each
other. This is immediately true for GR as a result of the theorem of Frobenius but
not true for Lovelock theory. It is an additional assumption we have make in order
to make the problem tractable [34]. The quite general metric anzatz for which we
want to solve the EGB field equations boils down to,

ds2 D e2�.t;z/B .t; z/�3=4 ��dt2 C d z2
�C B .t; z/1=2 h.4/�� .x/ dx�dx� : (2.30)

Using light-cone coordinates,

u D t � zp
2
; v D t C zp

2
: (2.31)

the metric reads

ds2 D �2e2�.u;v/B .u; v/�3=4 dudvC B .u; v/1=2 h.4/�� .x/ dx�dx� : (2.32)
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We want to solve Lovelock’s equations (2.4) for metric (2.32). The key to doing so
boils down to the following two equations: the .uu/ and .��/ equations that literally
play the role of integrability conditions for the full system of equations of motion
[35],

Euu D 2�;uB;u � B;uu

B



1C ˛

�
B�1=2R.4/ C 3

2
e�2�B�5=4B;uB;v

��
; (2.33)

Evv D 2�;vB;v � B;vv

B



1C ˛

�
B�1=2R.4/ C 3

2
e�2�B�5=4B;uB;v

��
: (2.34)

The above permit to classify and eventually completely solve the full system of field
equations [34]. We have three classes of solutions depending on wether the second,
the first factor is zero, or again a third class for constant B . Here we concentrate on
the class of most interest, class II, corresponding to,

2�;vB;v � B;vv

B
D 0; 2�;uB;u � B;uu

B
D 0 (2.35)

The other classes are degenerate and occur for special relations of couplings only.
Most importantly class II solutions are directly connected to GR since (2.35) is
independent of the coupling constant ˛. Solving (2.35) immediately shows that
we have a locally static space-time [36] and thus a somehow weaker version of
Birkhoff’s theorem still holds.

Solving the remaining field equations leads eventually to the metric solution
[33, 34],

ds2 D �V .r/ dt2 C dr2

V .r/
C r2h.4/�� .x/ dx�dx� ; (2.36)

with lapse function,

V.r/ D R.4/

12
C r2

12˛

2
6641˙

vuut
1C 12˛�

5
C
˛2
�
R.4/

2 � 6 OG.4/

�

r4
C 24˛M

r5

3
775 ;

(2.37)

Note first that there are two branches of solutions. This is true generically in EGB
theory and results from the higher order nature of the theory [12]. In EGB there
are generically two vacua for a given theory.8 The upper 0C0 branch does not have
a well-defined GR limit (˛ ! 0) and turns out to be unstable (for a full recent

8In higher order Lovelock theory there are more according to the order of the highest order
Lovelock term [12].
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discussion on stability of EGB vacua see [37]). The lower branch is ghost free [38]
and is the branch that we will consider from now on omitting the ‘C’ branch. The
horizon sections, parametrized by the four dimensional metric h.4/�� are constrained
by the field equations to be Einstein spaces,

R.4/�� D
R.4/

D � 2h
.4/
�� (2.38)

But as we can see from the lapse function which has to be a function of the radial
variable r , a new geometric condition now appears whereupon the horizon quantity
R.4/

2 � 6 OG.4/ has to be constant. Combining the two conditions gives,

C˛ˇ
�C˛ˇ
� D �ı�� (2.39)

where � is a given constant and C˛ˇ
� is the four dimensional Weyl tensor
associated to h.4/�� . This is a supplementary condition for EGB theories, the Dotti-
Gleiser condition, (2.39) imposed in addition to the usual Einstein space condition
(2.38) for higher dimensional general relativity. Clearly then, for EGB theory, the
lapse function for the black hole carries a supplementary information particular to
the type of horizon section for the black hole solution. For example, the Euclidean
Schwarszchild metric is not a legitimate internal metric anymore since it does not
verify (2.39). Both of the conditions (2.38) and (2.39) present a geometric similarity
in that we ask for (part of) the curvature tensor to be analogous to the spacetime
metric. The main difference being that the curvature tensor in (2.39) is the Weyl
tensor and, given its symmetries, it is actually its square which has to be analogous
to the spacetime metric. Clearly horizons with � ¤ 0 will not be homogeneous
spaces and not even asymptotically so. Another interesting point is that the Gauss-
Bonnet scalar, whose spacetime integral is the Euler characteristic of the horizon,
has to be constant for these solutions to be valid. The Gauss-Bonnet scalar of the
internal space then reads OG.4/ D 4� C 24�2 and the potential [33, 34],

V.r/ D � C r2

12˛

 
1 �

r
1C 12

5
˛� � 24˛

2�

r4
C 24˛M

r5

!
(2.40)

sinceR.4/ D 12�. For� D 0, we obtain the black holes first discussed by Boulware
and Deser (see [39]). In this case since the Weyl curvature is zero the horizon
sections are geometries of constant curvature. Taking � D 0 we note that these
black holes are asymptotically flat and are an extension of the higher dimensional
version of the Schwarzschild solution. In fact taking the limit of ˛ small and large
r one obtains precisely the latter GR solution. Recently these black holes have been
reported to have a spin 2 instability for small enough mass parameter [40]. This
result has been extended to Lovelock black holes [41]. It is not yet understood what
is the physical nature of this “short distance scale instability” and if it is somehow
related to thermodynamic instability and quantum Hawking radiation.
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Putting this aside we now want to examine cases of Einstein metrics whose
squared Weyl curvature is not zero but constant. This is a special case of Einstein
metric and the Dotti-Gleiser condition is much like a supplementary requirement.
What is already clear is that any such solution will not be asymptotically “usual”
as the fall off the relevant term is 5 rather than six dimensional. Indeed notice that
the �-term in (2.40) has a fall off rate of a five-dimensional Boulware-Deser black
hole [39] and is therefore dominant over the “usual” mass term contribution, [42].
We now investigate a simple example which will have interesting four dimensional
consequences.

Consider a four-dimensional space which is a product of two 2-spheres,

ds2 D 21
�
d�21 C sin2 �1d�

2
1

�C 22 �d�22 C sin2 �2d�
2
2

�
; (2.41)

where the (dimensionless) radii 1 and 2 of the spheres are constant. The entire
six-dimensional metric reads,

ds2.4/ D �V .r/ dt2 C dr2

V .r/
C r221

�
d�21 C sin2 �1d�

2
1

�C r222 �d�22 C sin2 �2d�
2
2

�
;

(2.42)

with lapse function

V .r/ D R.4/

12
C r2

12˛

 
1 �

r
1 � 24k2˛ � 24�˛

2

r4
C 24˛M

r5

!
: (2.43)

In order for (2.42) to be a solution to the equations of motion the spheres have to be
of equal radius, 1 D 2. This ensures that (2.42) is an Einstein space. The second
condition is then immediately verified for a product of 2-spheres. We have � D
1

321
> 0 and � D 4

341
. Note that even when the 2-sphere curvature is normalized to

1 D 1 then � ¤ 1. A linear redefinition of the r coordinate then shows that the area
of the four dimensional space is reduced compared to the homogeneous 4-sphere.
In other words space-time is asymptotically altered by an overall solid angle deficit.
This results in a genuine curvature singularity at r D 0. Of course when we have
M ¤ 0 there is central curvature singularity at r D 0 anyway. But, for (2.42) the
r D 0 singularity is present even for zero mass whenever � ¤ 0! This is not an
artefact of EGB theory. In fact it is easy to see, taking the combined limit of ˛! 0

and large r , that the resulting GR black hole with V.r/ D R.4/

12
Cr2k2�M

r3
has exactly

the same problem at the origin independently of the value of M . For M D 0 the
GR solution has a naked singularity at the origin. Note again that the lapse function
for higher dimensional GR is the same with the higher dimensional Schwarzschild
black hole modulo the horizon curvature term. The zero mass solution is singular
at the origin wether we are in GR or Lovelock theory. But for Lovelock theory an
interesting effect occurs due to the presence of the � term in the lapse function.
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To see this consider for the moment M D 0 in the lapse function (2.42). Then
the � term in (2.42) is identical to the mass term in the Boulware Deser black hole
in five dimensions. Therefore, as we know from the Boulware-Deser solution [39]
this extra � term generically generates an event horizon cloaking the central r D 0
singularity as long as ˛ ¤ 0! In fact the length scale of this event horizon is given
by the coupling constant ˛ � length2 which we know from string theory effective
actions [43] is related to the fundamental string tension ˛0. One then can interpret
this horizon as a higher order ‘quantum’ cloak of an otherwise naked singularity
present in GR. Details for the horizon structure can be found in [34]. We will come
back to this solution in order to construct a Galileon black hole.

Let us, before moving on, make some final remarks regarding these solutions.
First we should note that most probably these multiple sphere solutions can be
unstable to linear perturbations. It has been shown in GR [31] that there is a “balloon
instability” whereupon one of the spheres wants to deflate with respect to the other.
This geometric effect may remain true in the above EGB version [33] although the
perturbation equations for EGB in lesser symmetry change completely compared
to GR. It is also probable that this instability may be stabilized by the inclusion
of a magnetic field in the relevant solution [44]. Secondly we should note that the
above construction involving multiples of equal radius spheres, can be undertaken
in arbitrary even dimensional spacetime as long as we truncate Lovelock theory
to EGB. If one considers higher order Lovelock terms it is not known under what
geometric conditions the horizon sections will be admissible. One may expect a
higher order condition of the type (2.39) in third and higher curvature order. . . We
expect the horizon sections to be more and more constrained as higher order
Lovelock terms come into play. At the same time since horizon sections will be of
higher dimension this will allow for a richer geometry. This is also an open question.
Finally, putting it all together we have arrived to the following result concerning
EGB theory: given the anzatz (2.30), the only asymptotically flat solution of six
dimensional EGB theory with zero cosmological constant, is the Boulware Deser
solution [39]. This is because whenever � ¤ 0 the solution is not asymptotically
flat for six dimensional space-time. Therefore we can deduce that EGB theory is
very similar in this aspect to four dimensional GR lifting the degeneracy present in
higher dimensional GR due to the additional elegant geometric condition (2.39).

2.4 From Lovelock to Horndeski Theory: Kaluza-Klein
Reduction

In order to apply higher dimensional Lovelock theory to cosmology or gravity in
four dimensional space-time one needs some means of approach to four dimensional
gravity. There are at least two routes, braneworlds and Kaluza Klein reduction. In
the recent past Lovelock theory had an important implication in the braneworld
paradigm [45]. Braneworlds consist of higher dimensional spacetimes endowed with
a distributional brane where standard matter is localized. The idea “inspired” in
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rather loose terms from string theory, is that gravity perceives all the space-time
dimensions while matter is localized on a four dimensional braneworld. Since the
set-up involves junction or matching conditions an essential feature is the number of
extra dimensions, namely codimension, yielding for example a wall or string type of
defect. There is a long literature of articles on the subject treating codimension one
[12] and codimension two braneworlds (see [46] and references within) involving
respectively five and six dimensional EGB theory. In particular Lovelock theory
permits, due to the generalized junction conditions [47], well defined codimension
two braneworld cosmology [48]. This leads to important consequences since in
GR one cannot consider distributional sources for cosmological symmetry and
codimension 2. Again, the richer structure of Lovelock theory permits solutions
with distributional sources not available in higher dimensional GR. For more details
on these aspects see [12] and [46] and references within. Here, we will focus
on the more classical Kaluza-Klein compactification since it will give us a direct
connection to higher order scalar tensor terms, found in Galileon/Horndeski theory.
It will also provide a way to obtain exact black hole solutions [49].

It has been known since a long time [50] that a consistent Kaluza Klein reduction
of Lovelock theory gives a scalar-tensor theory with higher order derivatives,
but crucially, with second order equations of motion. In this sense many of the
Galileon terms discussed later on were known from previous work on Kaluza Klein
compactifications and braneworlds [51]. This is the direction we will take here. The
most generic of Kaluza-Klein reduction to four dimensions has recently been given
in the nice paper of [52]. There it has been shown that only up to the third order
Lovelock terms contribute to the Kaluza-Klein compactification in four dimensions.
Here we will concentrate on EGB theory i.e. up to second order Lovelock theory.
We will consider the simplest consistent toroidal compactification giving rise to one
extra scalar degree of freedom.

Start by taking D-dimensional Einstein Gauss-Bonnet theory which is the five
or six-dimensional Lovelock theory truncated to arbitrary dimension. The arbitrary
dimension D will be important when we end up promoting dimension from a
positive integer to a real parameter once we have undertaken a consistent Kaluza-
Klein reduction. We have the EGB action with a cosmological constant,

S D 1

16�GN

Z
dDx

p�g
h
�2�CR C OG

i
(2.44)

Consider now the simplest but consistent diagonal reduction along some arbitrary
n-dimensional internal curved space QK. We aim to reduce this theory down to four
space-time dimensions with D D 4C n:

ds2.4Cn/ D d Ns2.4/ C e�d QK2
.n/ : (2.45)

This particular frame is chosen in such a way as so there is no conformal factor
of � in front of the four-dimensional metric. As such the asymptotic character (i.e.
radial fall off) of a Lovelock D dimensional solution will be similar to the four
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dimensional one. All terms with a tilde refer to the curved n-dimensional internal
space, while terms with a bar refer to the .4/-dimensional space-time. One can show
for the given metric Anzatz that the KK reduction for n arbitrary is consistent, i.e.
that the reduced equations of motion are derived from the reduced action [53]. This
reduction is therefore generalised in the manner defined in [54, 55]. The important
result of this is that the integer n corresponding to the compact Kaluza-Klein space
can be analytically continued to a real parameter of the reduced action. Naturally
n corresponds to a dimension only for n integer. The solutions from the four
dimensional point of view are still solutions of the resulting effective action for
arbitrary n. The four dimensional effective action reads after integrating out the
internal space,

NS.4/ D
Z
d4x

p� Ng e n2 � n NR� 2�C˛ NGC n
4
.n � 1/@�2�˛n.n � 1/ NG��@��@��

�˛
4
n.n � 1/.n� 2/@�2r2� C ˛

16
n.n � 1/2.n � 2/ �@�2�2

C e�� QR �1C ˛ NR C ˛4.n � 2/.n� 3/@�2	C ˛ QGe�2�� ; (2.46)

For ˛ D 0 this effective action is just the usual toroidal KK effective action. The
higher order Gauss-Bonnet term gives rise to several higher order scalar-tensor
Galileon (or equivalently Horndeski) terms, [14, 15, 56, 57] with very particular
potentials. The Galileon field � can then simply be understood to be the scalar field
parametrising the volume of the internal space.

Indeed, apart from the usual lower order terms appearing in standard Kaluza
Klein compactification of Einstein dilaton theories, we see the emergence of several
higher order terms. For a start we have the four dimensional Gauss Bonnet term NG
which will contribute to the scalar field variation although it is a topological term for
four dimensional GR. Secondly we have NG��@��@�� involving the coupling of the
Einstein tensor with the kinetic term. Here, rather than metric-scalar interaction, as
for the standard kinetic term of � we have a curvature-scalar interaction which we
will see has very interesting consequences in the forthcoming section. This term has
equations of motion of second order essentially due to the divergence free property
of the Einstein tensor G�� . For example if one considers NR��@��@�� this is not
true. It has also shift symmetry in the scalar field typical of certain Galileon terms.
Furthermore we have, what is often called the DGP term, @�2r2� appearing in the
decoupling limit of the DGP model [25] and then the standard Galileon term

�
@�2

�2
which are also shift symmetric in �. The last line in the effective action takes part
only for a curved internal space in the face of Ricci and Gauss Bonnet curvature.
Reducing from the EGB action yields terms up to quartic order in derivatives (either
of the metric or the scalar, or a mixed combination of the two). Reducing higher
order Lovelock densities yields terms with a higher number of derivatives. A typical
example is the higher order permissible curvature-scalar interaction,

P��˛ˇr��r˛�r�rˇ� (2.47)
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which involves six derivatives and one can show [9] originates from the Kaluza-
Klein reduction of the third order Lovelock density [52]. Again the reader will
recollect the divergence freedom of the double dual tensor giving second order
field equations. Taking for exampleR��˛ˇr��r˛�r�rˇ� would fail this Galileon
property.

Although this effective action is very complex, and its field equations even more
so, it is “simple” to generate solutions for the above (2.46) in four dimensions [53].
One starts from a convenient Lovelock solution in D dimensions. Since we want
the four dimensional solution to have, at least locally, spherical horizon sections
we have to consider a solution where the .D � 2/ dimensional horizon sections
are .D � 2/=2-products of two spheres. This is precisely the extension of the six
dimensional solution we discussed in the previous section (2.42) generalized to
arbitrary dimensions [53]. The solution reads,

d Ns2.4/ D �V.R/dt2 C dR2

V .R/
C R2

nC 1d
NK2
.2/ ; (2.48)

V.R/ D � C R2

Q̨r

2
41�

s
1 � 2 Q̨r

l2
� 2 Q̨ 2r �2
.n � 1/R4 C

4 Q̨rm
R3Cn

3
5 ; (2.49)

Q̨r D 2˛n.nC 1/; 1

`2
D �2�
.nC 2/.nC 3/ (2.50)

e� D R2

nC 1 ; (2.51)

Here, n is the dimension of the internal space minus one 2-sphere in other words,
n D D � 4. This is the higher dimensional interpretation of n but once the solution
is written out we simply take n an arbitrary real number and (2.48) is still an exact
solution and n parametrizes the theory. In our notation here � D 0; 1;�1 is the
normalised horizon curvature and we have redefined for this section the constants Q̨r
and `. Taking carefully the Q̨r ! 0 limit, gives a standard Einstein dilaton solution
with a Liouville potential [49]. Set � D 0, � D 1 and let us start by making
some qualitative remarks describing properties of the solution without entering into
technical details. Note that, taking carefully the n D 0 limit switches off the scalar
field and the higher-derivative corrections, and we obtain pure GR in (2.46) and a
Schwarzschild black hole (2.48). This is particularly interesting since the scalar-
tensor solution given above for arbitrary n is a continuous deformation of the
Schwarzschild solution. When n is in the neighborhood of zero we are closest to the
GR black hole. As we hinted in the previous section the topology of the solution is
not that of GR. Indeed the warp factor of the 2-sphere, in (2.48), is recovered only at
n D 0, i.e. the GR limit. Otherwise the area of the reduced spherical horizon is given
by 4�R2

nC1 rather than the 2-sphere area, 4�R2. This is again a solid deficit angle (and
not a conical deficit angle) the same one we encountered for the Lovelock solution
in the previous section. As stressed in the previous sections this will give, atR D 0,



2 From Lovelock to Horndeski’s Generalized Scalar Tensor Theory 45

a true curvature singularity even if m D 0. For large R, we have a spacetime metric
very similar to that of a gravitational monopole [58]. Expanding 2.49 for small Q̨r
and large R gives,

V.R/ D 1C Q̨r
.n � 1/R2 �

2m

RnC1 C : : : (2.52)

This solution is reminiscent of a RN black hole solution where the role of the electric
charge is undertaken by the leading horizon curvature correction in Q̨r . This is the
particular � term we discussed in the previous section. This term dominates the
mass term close to the horizon and for n < 1. Note that it can be of negative sign
depending on the value of n and Q̨r . The further we are from n D 0, the GR limit,
the further we deviate from a standard four-dimensional radial fall-off. The first
important question we want to deal with is the central curvature singularity at R D
0, which is due to the solid deficit angle and is present even if m D 0. Also note
that whenever the square root in the lapse function (2.49) is zero we also have a
branch singularity which is also a dangerous curvature singularity. Setting m D 0,
we find that for �1 < n < 1 and Q̨r > 0 the singularity at R D 0 is covered
by an event horizon created by the higher-order curvature correction. In its absence
( Q̨r D 0), this solution would have been singular. . . The UV (small R) behaviour
of the solution is therefore regularised by the presence of the higher-order terms. If
n > 1 or n < �1, then Q̨r < 0 is needed in order to preserve the event horizon. The
remaining cases are singular.

Now let us switch on the mass,m ¤ 0. Whenever Q̨r > 0, we have a single event
horizon. When �1 < n < 1, there is no branch singularity however small m is.
On the contrary, when n > 1, the mass is bounded from below in order to avoid a
branch singularity:

m >

�
2

nC 3
� nC3

4 Q̨
nC1
2

r

n� 1 : (2.53)

When n < �1, the solution is also a black hole but the mass term is not falling off at
infinity. The region of most immediate interest is whenever n is small but not zero.

The black hole properties are rather different for Q̨r < 0. When �1 < n < 1,
there is an inner and an outer event horizon as long as the following condition is
fulfilled:

�
1

2

� nC1
2

<
m.1 � n/
j Q̨r j nC1

2

<

�
2

nC 3
� nC3

4

: (2.54)

When n > 1, a single event horizon exists, covering a single branch singularity with
Rs < Rh.

Overall we can say that the KK solution given here has an interesting horizon
structure and presents again a quantum cloaking of an otherwise Einstein-Dilaton
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singular solution. It is however not of ordinary asymptotics bifurcating in this way
the no hair paradigm for Galileons [59]. In the last section we will see a way to
construct asymptotically ordinary solutions with fake black hole hair.

2.5 Self-tuning and the Fab 4

As we saw in the previous sections Horndeski or Galileon theory encompasses all
the possible (single) scalar tensor terms one can consider in order for the equations
of motion to be of second order. This is an essential requirement for a well-defined
classical modification of gravity [5]. In this section we will question which of the
terms in scalar-tensor theory have “self-tuning” properties. Self-tuning is a rather
simple and quite old idea with application to the cosmological constant problem.
The basic principle consists of finding solutions for flat (or possibly maximally
symmetric vacua) of some gravity action endowed with a bulk cosmological
constant, independently of the value of the cosmological constant in the action.
In order for self-tuning (and not fine tuning) to be effective the cosmological
constant should not be fixed with respect to any of the coupling constants in the
gravitational action. The idea then is that the cosmological constant is absorbed
by a dynamical solution involving the non-trivial scalar field without affecting the
gravitational background. This can only be a “partial” solution to the cosmological
constant problem since radiative corrections will destabilize this vacuum solution
beyond a certain energy scale, the cutoff of the effective gravity theory. It is
however an interesting first step especially since no theories were known, before
[9], to have such a property without some hidden effective fine tuning of the action
coupling constants as for example in codimension one braneworld models (see for
example [60]). We should note that recently there has been considerable progress
on protecting the cosmological constant from standard model radiative corrections
[61] and we refer the interested reader to this article for the model in question which
interestingly is a rather minimal extension of GR. Rather, for our purposes, having
at hand the general scalar tensor theory we will formulate the following question:
is there a subset of Horndeski theory with self-tuning properties? The answer is
affirmative as shown in [9], yielding a rather simple and neat geometrical theory
which was dubbed by the authors as Fab 4 theory. We start by presenting the theory
and then give a specific self tuning solution which elegantly and non-technically
gives the general idea. We close the section by showing a simple method to obtain
regular black hole solutions in fab 4 and Horndeski theory, independently of self-
tuning.

The Fab 4 potentials make up the most general scalar-tensor theory capable of
self-tuning. They are given by the following geometric terms,

Ljohn D p�gVjohn.�/G
��r��r�� (2.55)

Lpaul D p�gVpaul.�/P
��˛ˇr��r˛�r�rˇ� (2.56)
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Lgeorge D p�gVgeorge.�/R (2.57)

Lringo D p�gVringo.�/ OG (2.58)

where R is the Ricci scalar, G�� is the Einstein tensor, P��˛ˇ is the double dual of
the Riemann tensor (2.7), OG D R��˛ˇR��˛ˇ � 4R��R�� CR2 is the Gauss-Bonnet
combination. As we saw in the previous section all of these terms with particular
potentials appear in Kaluza-Klein reduction of higher order Lovelock terms. Self
tuning solutions exist for any of these potentials as long as either fVjohng ¤ 0 or ,
fVpaulg ¤ 0 or fVgeorgeg are not constant. Note that this constraint means that GR
in accordance to Weinberg’s no-go theorem [7] does not have self-tuning solutions.
Also Vringo cannot self-tune but does not spoil self-tuning, i.e. it cannot self-tune
without (a little) help from his friends-hence the unfortunate name. Also note that
taking fVgeorgeg D constant as for GR with fVjohng ¤ 0 suffices for example to
have a self-tuning theory. In fact pure GR does not exclude self-tuning of the theory
as long as another non-trivial fab 4 term is present. This is also very interesting from
a phenomenological point of view. We will see in what follows how all these facts
come about.

The fab 4 terms are related to particular functionals of the Horndeski potentials,

�1 D 2V 0
ringo.�/
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Vpaul.�/ (2.59)

�3 D V 00
ringo.�/ ln.jj/� 1

8
V 0

paul.�/ �
1

4
Vjohn.�/ Œ1 � ln.jj/� (2.60)

�8 D 1

2
V 0

john.�/ ln.jj/; (2.61)

�9 D �bare
� � 3V 00

george.�/ (2.62)

F C 2W D 1

2
Vgeorge.�/� 1

4
Vjohn.�/ ln.jj/ (2.63)

Notice that the self-tuning constraints fix completely the dependence on the kinetic
term . Notice also that the Fab 4 terms are scalar interactions with space-time
curvature. No pure potential or kinetic terms are allowed for self-tuning. Again, we
will see why their form has to be so special.

Weinberg’s no-go theorem tells us that our vacuum solution must not be Poincaré
invariant [7]. Hence if we consider cosmological symmetry with a time dependent
background, the scalar field has to depend non-trivially on the time coordinate
breaking Poincaré invariance for flat space-time. The self-tuning filter defining the
self-tuning property and thus the form of Fab 4 terms is as follows:

• Fab 4 terms admit locally a Minkowski vacuum for any value of the net bulk
cosmological constant

• this remains true before and after any phase transition in time where the
cosmological constant jumps instantaneously by a finite amount. The scalar field
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will have to be able to change accordingly in order to accommodate the novel
value without affecting the flat space-time background.

• Fab 4 terms permit non-trivial cosmologies i.e. does not self-tune for any other
matter backgrounds other than vacuum energy.

The last condition ensures that Minkowski space is not the only cosmological
solution available, something that is certainly required by observation. The idea
is that the cosmological field equations should be dynamical, with the Minkowski
solution corresponding to some sort of fixed point. In other words, once we are
on a Minkowski solution, we stay there—otherwise we evolve to it dynamically
[62]. This last statement would indicate that the self-tuning vacuum is an attractive
fixed point. Mathematically self-tuning under these conditions, and especially the
second, translates to a junction condition problem where the metric is regular andC2

whereas the second derivative of the scalar field contains Dirac distribution terms.
The full equations of motion are given by,

E ��
john C E ��

paul C E ��
george C E ��

ringo D 1
2
T �� (2.64)

E
�

john C E
�

paul C E �
george C E

�
ringo D 0 (2.65)

We have included the cosmological constant in the energy momentum tensor T �� .
The contribution of each term from variation of the metric is given by

E ��
john D

1

2
Vjohn.G

�� � 2P ����r��r��/C

C 1
2
g�� ı

�˛ˇ

���r�.
p
Vjohnr˛�/r�.

p
Vjohnrˇ�/ (2.66)
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E ��
george D VgeorgeG

�� � .r�r� � g��rr/Vgeorge (2.68)

E
��

ringo D �4P ����r�r�Vringo (2.69)

and from variation of the scalar by

E
�

john D 2
p
Vjohnr�.

p
Vjohnr��/G�� (2.70)

E
�

paul D 3V 1=3
paulr�

�
V
1=3

paulr˛�
�
r�
�
V
1=3

paulrˇ�
�
P��˛ˇ � 3

8
Vpaul OG (2.71)

E �
george D �V 0

georgeR (2.72)

E
�

ringo D �V 0
ringo
OG (2.73)
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Notice that the scalar equation of motion vanishes identically for flat space-time.
This necessary condition can be traced back to the distributional origin of the
scalar field and strongly characterizes these terms. Indeed note that a canonical
kinetic term for the scalar is disqualified from self-tuning because there is no matter
source to account for the distributional part of the scalar field. This is why fab 4
terms represent curvature-scalar interactions: so that their scalar field equations are
redundant for the self-tuning background in question.

Instead of going through the detailed derivation of the self-tuning terms in
Horndeski theory we will rather look at a simple cosmological example in order to
see how self-tuning works in practice. For the details we refer the interested reader
to the original papers, [9].

In order to evade Weinberg’s no-go argument concerning the cosmological
constant we have to break Poincaré invariance for the scalar field. As such we
consider a time-dependent scalar field and the FRW family of cosmological metrics
of the form,

ds2 D �dT2 C a2.t/
ijdxidxj (2.74)

where 
ij is the metric on the unit plane (� D 0), sphere (� D 1) or hyperboloid
(� D �1). The Friedmann equation reads H D �bare

� as we are supposing only
vacuum energy to be present,

H DHjohn CHpaul CHgeorge CHringo C bare
� (2.75)

and

Hjohn D 3Vjohn.�/ P�2
�
3H2 C �

a2

�

Hpaul D �3Vpaul.�/ P�3H
�
5H2 C 3 �

a2

�

Hgeorge D �6Vgeorge.�/


�
H2 C �

a2

�
CH P� V

0
george

Vgeorge

�

Hringo D �24V 0
ringo.�/

P�H
�
H2 C �

a2

�

Self-tuning requires a flat space-time solution and a time dependent non-trivial
scalar field whenever m D � and for all�. Flat space in cosmological coordinates
is given for a hyperbolic slicing � D �1 with a.T / D T and H D 1=T .
This is Milne space-time, the cosmological slicing of flat Minkowski space-time.
Therefore, pluggingH2 D ��=a2 into (2.75), we immediately see that

Vjohn.�/. P�H/2 C VPaul .�/. P�H/3 � V 0
george.�/.

P�H/C � D 0 (2.76)

Here, we immediately see that ringo or a constant george do not spoil self-tuning
but require necessarily another non-trivial fab 4 term. Indeed we see that the scalar
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field � is given locally (in space and time) with respect to the arbitrary bulk value of
the cosmological constant. This is again an essential condition. For since the scalar
field equation is redundant and the space-time metric given, the Friedmann equation
has to fix the scalar field dynamically i.e. with respect to its derivative. Hence the
first condition means that the Friedmann equation is not trivial; it depends on P�.
Furthermore, the scalar equation of motion is actually redundant for flat space-time.
This is important for otherwise under an abrupt change of the cosmological constant
the scalar derivative could not be discontinuous disallowing self-tuning. This is the
implementation of the second condition. Indeed the scalar equationE� D 0, where

E� D Ejohn C Epaul CEgeorge C Eringo (2.77)

and

Ejohn D 6 d
dt

�
a3Vjohn.�/ P��2

	 � 3a3V 0
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�
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�1 C 1

3
�3

��

with operator

�n D Hn �
�p��

a

�n
(2.78)

vanishes on shell for n > 0. However, we should note that the third condition
is implemented by the fact that the full scalar equation of motion should not
be independent of Ra. This ensures that the self-tuning solution can be evolved
to dynamically, and allows for a non-trivial cosmology. The second Friedmann
equation results from the scalar and 1st Friedmann equation as a Bianchi identity.

In order to explicitly show a self-tuning solution consider some particularly
simple potentials that can be obtained by Taylor expansion on �.

Vjohn D Cj ; Vpaul D Cp; (2.79)

Vgeorge D Cg C C1
g � ; Vringo D Cr C C1

r � C C2
r �

2 ; (2.80)

This Taylor expansion corresponds to a slow varying late time scalar filed. Since
(2.76) is homogeneous in P�H it is quite easy to see that

� D �0 C �1T 2 ; (2.81)
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is a solution where �0 and �1 are constants, with

� C1
g �1 C 2Cj�21 � 4Cp�31 C

�

6
D 0 ; (2.82)

Therefore for arbitrary� there exists �1 satisfying locally (2.82) without fine tuning
of the potentials, here Cfab4. If � jumps to a different value then so can do �1 and
this corresponds to a discontinuous scalar field P�. The same mechanism occurs for
arbitrary potentials, of course there the solution is more complex. An interesting
question now arises: is it possible that self-tuning solutions exist for other vacuum
metrics of the theory. Could we for example have Fab 4 with a cosmological constant
and find a self-tuning vacuum black hole, in other words a black hole solution
than rather than de-Sitter have flat space-time asymptotics. This is still an open
problem for the theory, although a self-tuning solution has been recently found in
the literature with a remnant effective cosmological constant [18].

Let us now move on into the direction of exact solutions, describing a method
which will give black hole solutions in this theory [18]. Let us for simplicity
consider two of the Fab 4 terms namely John and George and let us also consider
their potentials to be constants. We have therefore the action,

S D
Z
d4x
p�g ��RC ˇG��@��@��

	
; (2.83)

and here notice we have not included a cosmological constant. The relevant coupling
constants are now � and ˇ and as a result the above action is shift-symmetric for the
scalar field �. According to what we described above, this theory is a self-tuning
theory for flat space-time as long as ˇ ¤ 0 had we had a cosmological constant in
the action. The metric field equations read,

�G�� C ˇ

2

�
.@�/2G�� C 2P�˛�ˇr˛�rˇ�

Cg�˛ı˛��
ı r
r�rır��
i
D 0; (2.84)

where P˛ˇ�� is the double dual of the Riemann tensor (2.7). The � equation of
motion can be rewritten in the form of a current conservation, as a consequence of
the shift symmetry of the action,

r�J � D 0; J � D ˇG��@��: (2.85)

Note that (2.85) contains a part of the metric field equations, namely that originating
from the Einstein-Hilbert term. We now consider a spherically symmetric Anzatz

ds2 D �h.r/dt2 C dr2

f .r/
C r2d˝2: (2.86)
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where f .r/, h.r/ are to be determined from the field equations.
Let us make a slight pause in order to make connection with the flat self-tuning

solution we exposed previously. In the (2.86) system of coordinates, Milne space-
time is given as,

T D
p
t2 � r2; cothX D t

r
(2.87)

and thus we note from (2.81) that the self tuning solution we depicted previously
(2.81) is given by �.t; r/ D �0 C �1.t

2 � r2/. The scalar field therefore in this
coordinate chart is a radial, time dependent function. Therefore any self-tuning black
hole solution will have to have a time and radially dependent scalar.

Although we do not find a self-tuning solution for the forthcoming example (we
have taken � D 0) we consider the Anzatz,

ˇGrr D 0; �.t; r/ D qtC  .r/: (2.88)

involving a linear time dependence in the scalar field.9 Notice from the field
equations (2.84) that due to shift symmetry no time derivatives are present, the
equations of motion are ODE’s. This condition (2.88) solves not only the scalar
but also the .tr/-metric equation which is not trivial due to time dependence of
the scalar field �. Therefore (2.88) is a valid anzatz rendering the whole system
integrable. Indeed the remaining equations are solved for, with f D h D 1 � �

r
;

whereas the scalar field is not trivial and reads,

�˙ D qt˙ q�


2

r
r

�
C log

p
r �p�p
r Cp�

�
C �0 (2.89)

The regularity of the metric and the scalar field at the horizon can be conveniently
checked by use of the generalized Eddington-Finkelstein coordinates, with the
advanced time coordinate, v,

v D t C
Z
.f h/�1=2dr: (2.90)

One finds from (2.86) and (2.90),

ds2 D �hdv2 C 2
p
h=f dvdrC r2d˝2: (2.91)

9Clearly, had we been seeking a self-tuning solution in the presence of an arbitrary cosmological
constant this linear anzatz would not do. We know rather that there must be at large distance a t 2

dependence on the scalar field. This unfortunately renders the field equations t -dependent and the
system cannot admit a non zero mass solution. In other words a self-tuning black hole would have
to be part of a radiating space-time. Again this is an open problem.
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One can explicitly check that the solution (2.89) with the plus sign does not diverge
on the future horizon (whereas the solution with the minus sign is regular on the
past horizon). Indeed the transformation (2.90) reads, v D t C r C � log.r=�� 1/;
and using (2.89) one finds,

�C D q



v � r C 2p�r � 2� log

�r
r

�
C 1

��
C const; (2.92)

which is manifestly regular at the horizon, r D �. This is therefore a regular GR
black hole with a non-trivial scalar field which is also regular at the horizon. This
method can be applied in differing Gallileon contexts yielding relatively simple and
well-defined black hole solutions [63]. It seems that the linear time dependence
of the scalar field, its shift symmetry and the presence of higher order terms is
capital to the presence of regular black hole solutions. Indeed if there is no linear
time-dependence then the scalar field can present singular behavior at the horizon
and solutions are not asymptotically flat [64]. We can re-iterate the Anzatz (2.88)
roughly as long as the Galileon scalar equation of motion gives the metric field
equation of the lower order term. In other words gravitational terms go in pairs, as
here in our example, the Einstein-Hilbert and the John term. One can show that a
similar property holds for Ringo and Paul terms of the Fab 4. Indeed one can show
that the scalar equation associated to Paul, P��˛ˇr��r˛�r�rˇ� with Vpaul D
constant gives the metric field equations of � OG. Note also that the latter is also
invariant under shift symmetry. This method bifurcates the no-hair arguments in
[59] (see [18] and [65]).

Conclusions
In this lecture we have studied certain aspects of Lovelock and Horndeski
theory that have been discussed very recently in the literature of modified
gravity theories. The former theory, as we saw is the general metric theory of
massless gravity in arbitrary dimensions and with a Levi-Civita connexion,
whereas the latter is the general scalar-tensor theory in four dimensional
space-time, again using a Levi-Civita connexion. Lovelock theory, is GR with
a cosmological constant in four dimensions whereas Horndeski theory is GR
once the scalar field is frozen. In this sense and given their unique properties
the two theories are essential and very general examples of modified gravity
theories. General because, for example, Horndeski theory includes known and
widely studied F.R/ or F. OG/ theories. General also since part of Horndeski
theory is a limit of other fundamental modified gravity theories such as
massive gravity [16] in its decoupling limit [25]. We saw that Lovelock and
Horndeski theories are explicitly related via Kaluza-Klein reduction and one
can map solutions from one theory to the other. This permitted to find analytic

(continued)
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black hole solutions in Horndeski theory for the first time [53]. We then moved
on to discuss a subset of Horndeski theory which has self-tuning properties.
This particular theory consisting of four scalar-curvature interaction terms has
been dubbed Fab 4 [9]. Although Fab 4 does not present a full solution of the
cosmological problem since it does not account for radiative corrections [8],
the theory itself has some very interesting integrability properties giving for
the first time scalar-tensor black holes with regular scalar field on the black
hole horizon. The method described briefly here is quite powerful since it can
be applied in differing gravitational theories of the Galileon type or even with
bi-scalar tensor theories [63]. We have depicted very recent ongoing research
directions in these fields which have numerous open problems. We hope that
these notes will help in tackling some of those in the recent future.
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Chapter 3
Modified Gravity and Coupled Quintessence

Christof Wetterich

Abstract The distinction between modified gravity and quintessence or dynamical
dark energy is difficult. Many models of modified gravity are equivalent to models
of coupled quintessence by virtue of variable transformations. This makes an
observational differentiation between modified gravity and dark energy very hard.
For example, the additional scalar degree of freedom in f .R/-gravity or non-local
gravity can be interpreted as the cosmon of quintessence. Nevertheless, modified
gravity can shed light on questions of interpretation, naturalness and simplicity.
We present a simple model where gravity is modified by a field dependent Planck
mass. It leads to a universe with a cold and slow beginning. This cosmology can
be continued to the infinite past such that no big bang singularity occurs. All
observables can be described equivalently in a hot big bang picture with inflation
and early dark energy.

3.1 Introduction

Einstein’s equation

M2.R�� � 1
2
Rg��/ D T�� (3.1)

expresses geometrical quantities on the left hand side in terms of matter and
radiation on the right hand side. The basic geometrical quantity is the metric g�� ,
with R�� and R the Ricci tensor and curvature scalar formed from the metric and
its derivatives. The energy momentum tensor T�� contains contributions from the
particles of the standard model (“baryons”, neutrinos, radiation) and from dark
matter.

The observation of the present accelerated expansion [1,2] as well as indications
for an inflationary epoch in very early cosmology tell us that Eq. (3.1) cannot be
complete despite the numerous successful predictions of general relativity. One may
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supplement terms on the left or right side, as indicated by the dots

R�� � 1
2
Rg��C::: D 1

M2
.T�� C::: /: (3.2)

Additional contributions to the energy momentum tensor are usually called dark
energy, whereas a change on the left hand side is associated with a modification of
gravity or general relativity.

It is obvious that this distinction cannot be a particularly strict one since the
validity of an equation does not depend on where one writes terms. The most promi-
nent candidate for the explanation of an accelerated expansion, the cosmological
constant, can be interpreted as an additional contribution to the energy momentum
tensor �T�� D 	g�� . This interpretation is suggested by the contribution of the
effective potential of the Higgs scalar to 	, or similar for other scalar fields. We
could write the cosmological constant term also on the left hand side and consider
it as a modification of gravity—after all it influences the gravitational equations in
“empty space”.

One may try a more concise definition of the meaning of modified gravity by
requiring that the change of the Einstein tensor on the l.h.s. of Eq. (3.1) involves
derivatives of the metric, while terms with additional fields and no derivatives of
g�� would contribute to T�� . We will see, however, that modified gravity models
defined in this way can often be rewritten in terms of different fields, frequently
additional scalar fields. What appears in one field basis as a modification of gravity
with terms involving derivatives of the metric shows up as dark energy with new
fields and without metric derivatives in an other field basis. In particular, modified
gravity theories that are consistent with the observed evolution of the universe are
often equivalent to dynamical dark energy or quintessence. The borderline between
modified gravity and dark energy becomes rather fuzzy. In fact, the first model of
quintessence has originally been formulated as a modification of gravity [3].

The reason for this ambiguity between modified gravity and dark energy is
connected to a basic property: observables depend on the dynamical degrees of
freedom, but not on the choice of fields used to describe them (“field relativity”).
For example, the metric may contain a scalar degree of freedom besides the graviton.
This scalar is not distinguished from a “fundamental scalar field” (cosmon) which
is the basic ingredient of quintessence.

These lecture notes will present several examples for the equivalence of modified
gravity and quintessence. In particular, f .R/ gravity or a large class of non-local
gravity models are equivalent to coupled quintessence [4, 5]. We do not aim,
however, to cover all possible modifications of gravity. More general modified
gravity models may contain further non-scalar degrees of freedom (vectors of
tensors), involve an infinite number of degrees of freedom, or give up the basic
diffeomorphism symmetry underlying general relativity.

Recent reviews of modified gravity can be found in [6–11]. We concentrate here
on the deep connection between modified gravity and coupled quintessence. This
helps to understand many of the rich features of modified gravity in a simple and
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unified way. It also shows that many claims for observational distinguishability
between modified gravity and quintessence are actually not justified.

In Sects. 3.2 and 3.3 we display our basic setting and discuss the field transforma-
tions that relate different versions of a given physical model. In Sect. 3.4 we describe
the cosmology of Brans-Dicke theory in the language of coupled quintessence. This
points to strong observational bounds on the effective coupling ˇ between the cos-
mon and matter that will play an important role later. Section 3.5 discusses general
scalar-tensor models with actions containing up to two derivatives. We highlight the
importance of field-dependent particle masses in order to find models obeying the
bounds on ˇ. Section 3.6 discusses a simple three-parameter cosmological model
along these lines which is compatible with all present observations from inflation
to late dark energy domination. Formulated as a scalar-tensor theory (Jordan frame)
it exhibits an unusual cosmic history. The universe shrinks during the radiation-
and matter-dominated epochs and the evolution is always very slow. Cosmological
solutions remain regular in the infinite past and there is no big bang singularity. On
the other hand, the same model is characterized in the Einstein frame by a more
usual big bang picture. This underlines that the field transformations that a crucial
for these notes also incorporate important conceptual aspects.

In Sect. 3.7 we describe the equivalence of f .R/-modified gravity with cou-
pled quintessence [12–14]. For constant particle masses the equivalent coupled
quintessence models exhibit a large universal cosmon-matter coupling ˇ D 1=

p
6.

This issue is a major problem for the construction of realistic f .R/ models. We
sketch in Sect. 3.8 how a vanishing coupling ˇ D 0 can be obtained for f .R/-
models with field-dependent particle masses. In Sect. 3.9 we turn to simple models
of non-local gravity. Again, such models are equivalent to coupled quintessence.
In Sect. 3.10 we ask the general question to what extent modified gravity models
which lead to second order field equations, as Horndeski’s models [15], can find an
equivalent description as coupled quintessence models. We find a huge class of such
modified gravity models for which the scalar-gravity part is given by the action for
quintessence, while additional information is contained in the details of the effective
cosmon-matter coupling. Our conclusions are drawn in the final section. Parts of
Sects. 3.5 and 3.6 have overlap with work reported in [16, 17].

3.2 Basic Setting

We will assume that the theory which describes the late universe (say from radiation
domination onwards) can be formulated as a quantum field theory. (This quantum
field theory may be an effective theory embedded in a different framework as
string theory.) We also restrict the discussion to the case where diffeomorphism
symmetry (invariance under general coordinate transformations) is maintained. The
most convenient way of specifying models is then the quantum effective action �
from which the field equations can be derived by variation. It is supposed to include
all effects from quantum fluctuations. We can perform arbitrary changes of variables
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in � . They correspond to changes of variables in the differential field equations. All
predictions of the model are contained in the field equations. A change of variables
can therefore not affect any observable quantities. We will in the following heavily
rely on this property of “field relativity” in order to demonstrate the equivalence
of many modified gravity theories with coupled quintessence. (Note that on the
level of the functional integral for a quantum theory a change of variables has two
effects. It transforms the classical action and induces a Jacobian for the functional
measure. The effective action is already the result of functional integration such that
no Jacobian plays a role in the variable transformation.)

We postulate that � is invariant under general coordinate transformations and
write it in the form

� D
Z
d4x
p
g.Lg CLm/: (3.3)

Here Lg is the gravitational part, while the variation of
p
gLm with respect to g��

yields the energy momentum tensor T �� . Einstein’s equation follows for

Lg D �M
2

2
R; (3.4)

while Lm involves matter and radiation

Lm D Lstandard model CLdark matter: (3.5)

Modified gravity corresponds to a more general form of Lg. The simplest form of
quintessence adds to Lm the contribution from a scalar field '.x/, consisting of a
potential V.'/ and a kinetic term,

4Lm D 1

2
@�'@�' C V.'/: (3.6)

This scalar field is called the “cosmon”.
Simple modifications of gravity add to Lg terms involving higher powers

of the curvature scalar as R2. They can play an important role for inflation
as in Starobinski’s model [18]. Within higher dimensional theories the higher
order curvature invariants have been employed for a mechanism of spontaneous
compactification [19] and for a description of inflation as an effective transition
from higher dimensions to four “large” dimensions [20, 21]. The field equations for
actions where R is replaced by an arbitrary function f .R/ have been investigated
long ago [22]. Modifications of gravity also arise if our four-dimensional world is
a “brane” embedded in some higher-dimensional space [23]. Higher-dimensional
scenarios can be described in an equivalent four-dimensional setting, involving in
principle infinitely many fields and in some cases non-local interactions. In the four-
dimensional language typically both calLg andLm are modified simultaneously. We
will concentrate in this lecture on simple four-dimensional models with only a few
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effective degrees of freedom. Many important aspects of modified gravity can be
understood in this simple setting. We are mainly interested in the role of modified
gravity for the present cosmological epoch and leave aside its potential relevance
for the early inflationary epoch.

Modified gravity models have a long history. One of the most prominent
historical models is Brans-Dicke theory [24], where the reduced Planck mass M
in Lg is replaced by a scalar field �.x/. In this case both Lg and Lm get modified,

Lg D ��
2

2
R; (3.7)

4Lm D 1

2
K@��@��: (3.8)

(Our choice of a scalar field � differs from the original formulation in [24]. The
constantK is related to the !-parameter in Brans-Dicke theory by K D 4!.) Many
aspects that are crucial for these notes can already be seen in Brans-Dicke theory,
and we will discuss them in the next two sections.

3.3 Weyl Scaling

It is possible to express Brans-Dicke theory as a type of coupled quintessence model.
For this purpose we perform a Weyl scaling [25,26] by using a different metric field
g0
�� , related to g�� by

g�� D w2g0
��: (3.9)

Here the factor w2 can be a function of other fields. Let us consider a scaling
involving the scalar field �without derivatives, w D w.�/. The new curvature scalar
R0 formed from g0

�� and its derivatives is related to R by

R D w�2fR0 � 6.ln w/I� .ln w/I� � 6.ln w/I� �g: (3.10)

Here we denote by semicolons covariant derivatives, in particular

.ln w/I� D @� ln w ; .ln w/�I D g0��@� ln w: (3.11)

The square root of the determinant of the metric, g D � det.g��/, transforms as

p
g D w4

p
g0: (3.12)
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We next make the specific choice

w2 D M2

�2
; (3.13)

resulting in

p
g�2R! p

g0M2R0 C derivatives of �: (3.14)

The term Lg takes now the standard form (3.4) and the “modification of gravity”
has been transformed away. As a counterpart, the kinetic term for � is modified by
replacing

p
g�Lm !pg0�L 0

m,

4L 0
m D

M2

2
.K C 6/@� ln� @� ln�: (3.15)

ForK > �6 the model describes gravity coupled to a scalar field. A canonical form
of the scalar kinetic term �L 0

m D @�'@�'=2 obtains for

' D pK C 6 M ln
� �
M

�
: (3.16)

The choice of the metric g0
�� is called the Einstein frame. In the Einstein

frame the Planck mass M is a fixed constant that does not depend on any other
fields. Cosmologies of two effective actions related by Weyl scaling are strictly
equivalent, with all observables taking identical values [27]. For a quantum field
theory the concept of the quantum effective action � is crucial for this statement.
Its first functional derivatives, the field equations, describe exact relations between
expectation values of quantum fields. Variable transformations as the Weyl scaling
are transformations among these field values—they may be associated with “field
coordinate transformations”. Observables that can be expressed in terms of field
values have to be transformed according to these variable transformations. For
cosmology it is crucial that all quantities, including temperature T , particle masses
m, or the coupling of particles to fields ˇ, are transformed properly under Weyl
scaling. It can then be established that suitable dimensionless ratios, as T=m,
remain invariant under Weyl scaling [27]. Dimensionless quantities are the only
ones accessible to measurement and observation. One is therefore free to use the
Einstein frame with metric g0

�� or the “Jordan frame” (3.7) with metric g�� - both
are equivalent, yielding the same results for dimensionless observable quantities.
This has been verified by detailed studies of many observables [27–32]. We may
summarize that physical observables cannot depend on the choice of fields used
to describe them, a principle called “field relativity” [32]. This principle extends
to observables involving correlations, which can be found from higher functional
derivatives of � .

It is crucial that also the matter and radiation part Lm is transformed under Weyl
scaling, due to the presence of the factor

p
g, or g�� in derivative terms. In general,
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not only the metric but also other fields appearing in Lm need to be transformed
under Weyl scaling. The electromagnetic gauge field A� needs no rescaling. Indeed
the Maxwell kinetic term remains invariant since a factor w4 from

p
g cancels two

factors w�2 from the inverse metric g�� appearing in

LF D 1

4
F��F�g

�g�� : (3.17)

For fermions, the factors of w drop out of the kinetic term provided we combine the
Weyl scaling (3.9) with a transformation of the fermion field

 D w� 3
2  0: (3.18)

This yields

p
g N 
�@� !

p
g0 N 0
�@� 0 C : : : ; (3.19)

where the dots denote a term containing a derivative of �, i.e.
p
g0 N 0
� 0@��. For a

model containing only massless gauge bosons and fermions the Weyl scaled version
of Brans-Dicke theory describes standard gravity and a massless scalar field that has
only derivative couplings. In this case ' can be associated with the Goldstone boson
of spontaneously broken dilatation or scale symmetry.

For massive fermions the situation changes drastically. A mass term mF
p
g N  

transforms according to

mF

p
g N  ! m0

F

p
g0 N 0 0 D mF

M

�

p
g0 N 0 0: (3.20)

We end with a non-derivative coupling of ' to the fermion mass

LF;m D mF exp

�
�ˇ'
M

�
N 0 0; (3.21)

with cosmon-matter coupling[4, 27]

ˇ D 1p
K C 6 D

1p
4! C 6 : (3.22)

3.4 Brans-Dicke Cosmology

For understanding the cosmological role of the coupling ˇ it is instructive to study
the cosmology of the Brans-Dicke theory in the Einstein frame. We assume a homo-
geneous and isotropic Schwarzschild metric with scale factor a.t/; H D @ ln a=@t ,
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and vanishing spatial curvature, coupled to a homogeneous scalar field '.t/. The
field equations for a fluid of massive particles read [4, 5]

H2 D 1

3M2
.C 1

2
P'2/; (3.23)

PC 3H.C p/C ˇ

M
. � 3p/ P' D 0; (3.24)

R' C 3H P' D ˇ

M
. � 3p/: (3.25)

For the radiation dominated epoch with p D =3 the coupling ˇ plays no role.
The field ' settles rapidly to an arbitrary constant value and one finds standard
cosmology. Additional massless fields for which ˇ vanishes do not change this
situation.

Once particles become non-relativistic, however, and matter starts to dominate
over radiation, the coupling ˇ leads to a modified cosmology. The field ' evolves
and particle masses change. After a transition period cosmology reaches a scaling
solution which reads .p D 0/

H D �

t
; P' D cM

t
;  D fM2

t2
: (3.26)

Equations (3.23)–(3.25) become algebraic equations for �; c and f , with solution

� D 2

3C 2ˇ2 ; f D
12 � 8ˇ2
.3C 2ˇ2/2 ; c D

4ˇ

3C 2ˇ2 : (3.27)

This asymptotic solution exists for

ˇ <

r
3

2
; ! > �4

3
: (3.28)

For ˇ of the order one one finds a scalar field dominated cosmology that is not
compatible with observation. This becomes even more drastic for ˇ >

p
3=2 where

matter can be neglected as compared to the scalar kinetic energy. In contrast, for
small ˇ the modification of the expansion remains small, with � close to the standard
value 2=3. The most prominent cosmological effect concerns the time variation of
the ratio of nucleon mass over Planck mass. Indeed, the field ' has changed between
matter-radiation equality and today by �' D '.t0/� '.teq/,

�' � 4ˇM ln

�
t0

teq

�
; (3.29)
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with a corresponding change of the nucleon mass

mn.teq/

mn.t0/
� exp

�
ˇ

M
�'

�
D
�
t0

teq

�4ˇ2
D zeq

6ˇ2 � .1100/ 3
2! : (3.30)

The relative change of the nucleon mass Rn � .3=2!/ ln.1100/ bounds ! as a
function of the observational boundRn < NRn on the relative variation of the nucleon
mass,

! >
10

NRn
& 100: (3.31)

The upper bound on the relative variation of the nucleon mass NRn can be
estimated from nucleosynthesis. (For Brans-Dicke theory no substantial change of
the nucleon mass occurs between nucleosynthesis and matter radiation equality.) We
evaluate

Rn D �mn

mn

D �1
2

�GN

GN
; (3.32)

with �mn D mn.tn/ � mn ; mn D mn.t0/ and tn the time of nucleosynthesis. The
second equation involves Newton’s constant GN . It reflects the fact that all particle
masses vary�mn and only dimensionless ratios asm2

nGN can influence the element
abundancies produced during nucleosynthesis [33]. We may use the bound from [33]

� 0:19 	 �GN

GN
	 0:1 (3.33)

for a constraint NRn D 0:1; ! > 100: This cosmological bound is weaker than
the bound from solar system gravity experiments ! > 4 
 104 [34]. On the other
hand, this bound restricts the overall cosmological evolution. More precisely, the
cosmological bound constrains a combination of ˇ and the change in the normalized
cosmon field since nucleosynthesis,

� 0:05 	 ˇ

M

�
'.tn/� '.t0/

� 	 0:1: (3.34)

3.5 Scalar Tensor Models

The problem with '-dependent particle masses in the Einstein frame persists for
many scalar tensor models. There are two types of general solutions for this issue:
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(i) Particle masses in the Jordan frame are dependent on � and scale � �. In the
Einstein frame the particle masses are then independent of � and ˇ vanishes
[3, 27].

(ii) The scalar field ' changes very little, both in cosmology and locally.

The simplest way to realize the second alternative is to add a potential V.�/ in the
Jordan frame. After Weyl scaling one finds in the Einstein frame

p
gV.�/ Dpg0V 0.�/; V 0 D w4V D M4

�4
V D exp


� 4'p

K C 6 M
�
V: (3.35)

If V 0.'/ has a minimum at '0 the cosmological solution will typically settle at this
minimum at early time, such that there is no residual cosmic time variation of the
ratio mn=M . On the other hand, if ' settles to '0 only after nucleosynthesis or
continues evolving, the cosmological bound (3.34) has to be respected.

A local mass distribution acts as a source for the scalar field with strength ˇ=M .
This induces an additional scalar-mediated attraction. For a massless scalar field the
relative strength of this interaction as compared to Newtonian gravity is 2ˇ2. If the
scalar mass

m' D
s
@2V

@'2
.'0/ (3.36)

is smaller than the inverse size of the solar system the presence of this scalar
interaction would be visible in post-Newtonian gravity experiments, limiting 1:2 

10�5, cf. Eq. (3.22). For larger m' the additional exponential suppression of a
Yukawa interaction allows for larger ˇ. If m' exceeds the inverse size of a massive
object the scalar field ' tends to settle inside the object at a value different from '0.
Then the nucleon mass becomes density dependent, implying again upper bounds
on ˇ [35]. For models predicting large ˇ and a small cosmological mass m' there
remains still the possibility that the local mass inside an object is substantially higher
than the cosmological mass outside the object, due to non-linear effects. This is
called chameleon effect [36]. We will see that many popular f .R/-theories lead to
large ˇ and small m' .

In the remainder of this section we will concentrate on the alternative (i) with
�-dependent particle masses. We will investigate a general class of scalar tensor
theories with an effective action

� D
Z
x

g
1
2


�1
2
F.�/R C 1

2
K.�/@��@��C V.�/

�
: (3.37)

This is the most general form for a scalar coupled to gravity which preserves
diffeomorphism symmetry, provided that terms with four or more derivatives can
be neglected. For a homogenous and isotropic Universe (and for vanishing spatial
curvature) the field equations take the form [16, 27]
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K. R� C 3H P�/C 1

2

@K

@�
P�2 D �@V

@�
C 1

2

@F

@�
RC q�; (3.38)

FR D F.12H2 C 6 PH/ D 4V �
�
K C 6 @F

@�2

�
P�2 (3.39)

�6 @F
@�2

. R�C 3H P�/�� 12 @2F

.@�2/2
�2 P�2 � T �� ;

F.R00 � 1
2
Rg00/ D 3FH2 D V C 1

2
K P�2 � 6 @F

@�2
H� P�C T00: (3.40)

The r.h.s. of the field equations involves the energy-momentum tensor T�� and
the incoherent contribution to the scalar field equation q�. The general consistency
relation between q�; T00 D  and Tij D pıij reads

PC 3H.C p/C q� P� D 0: (3.41)

For an ideal fluid of particles with a �-dependent mass mp.�/ the explicit form of
q� is given by

q� D �@ lnmp

@�
. � 3p/: (3.42)

In particular, for mp.�/ � � and  � 3p D mpnp , with np the number density of
particles, Eq. (3.42) reads

q� D � � 3p
�

D �mp

�
np: (3.43)

Let us consider the case where particle masses scale mp � � and concentrate on

F.�/ D �2 ; K.�/ D K: (3.44)

A particular case is V D 	�4. In this case the effective action (3.37) contains no
parameter with dimension of mass or length. If, furthermore, all particle masses in
Lm scale precisely �� no mass scale appears in Lm either. Such models are scale
invariant or dilatation invariant [3, 37]. Scale symmetry can be realized by a fixed
point in the “running” of dimensionless couplings and mass ratios as a function of �.
If the strong gauge coupling, normalized a momentum scale q2 D �2, is independent
of �, the “confinement” scale �QCD scales � �. For a scale invariant potential for
the Higgs doublet

Lh D 	h

2
.h�h� �h�2/2 (3.45)
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the minimum occurs for

h0 � �; (3.46)

such that for constant Yukawa couplings one has

me � �; (3.47)

and similar for quark and other charged lepton masses.
The cosmology of a model with exact scale symmetry is simple. After Weyl

scaling the potential becomes V 0 D 	M4 and particle masses are constant. The
model describes a standard cosmology with cosmological constant 	M4, coupled
to an exactly massless Goldstone boson with derivative couplings, the dilaton.
The dilaton settles to an arbitrary constant value in early cosmology and is not
relevant for late cosmology [3]. In particular, this type of model cannot account
for dynamical dark energy.

The situation changes profoundly if we allow for violations of scale symmetry
(dilatation anomaly) [3]. For example, we may consider a cosmological constant in
the Jordan frame, V D V0, or a quadratic potential V D �2�2. In both cases the
potential in the Einstein frame decays exponentially,

V D M4 exp
�
�˛'
M

�
; (3.48)

with ˛ D 4=pK C 6 for V D V0 and ˛ D 2=pK C 6 for V D �2�2. (We absorb
a multiplicative constant by a shift in '.) The scalar “cosmon” field will roll down
the potential, '.t !1/!1; V .t !1/! 0. Models of this type with constant
particle masses in the Jordan frame lead to non-trivial cosmologies [38,39]. They are
excluded, however, by the bounds on the time variation ofmn=M since the coupling
ˇ is large.

At this point a simple setting for a realistic dynamical dark energy becomes
visible. One may combine a dilatation anomaly in the potential, say V D V0 or
V D �2�2, with a scale invariant standard model of particle physics. If the charged
lepton masses and quark masses as well as �QCD all scale proportional to �, the
nucleon and charged lepton masses as well as binding energies and cross sections
become independent of ' in the Einstein frame. All observational bounds on time
varying fundamental couplings and apparent violations of the equivalence principle
are obeyed. The first realistic model of dynamical dark energy or quintessence was
actually a “modified gravity” of this type [3]. Models of this type can also explain the
recent increase in the fraction of dark energy˝h [40,41]. Scale symmetry violation
in the neutrino sector induced by a dilatation anomaly in the sector of heavy singlet
fields entering by the seesaw mechanism can account for an increasing neutrino
mass in the Einstein frame, ˇ < 0. This stops the evolution of ' as soon as neutrinos
become non-relativistic, typically around z D 5. From this time on the cosmology
looks very similar to a cosmological constant.



3 Modified Gravity and Coupled Quintessence 69

Scalar tensor models that lead to dynamical dark energy for the present cosmo-
logical epoch [3,27,42–47] are sometimes called “extended quintessence”. By virtue
of Weyl scaling they are equivalent to a subclass of “coupled quintessence” [4,5,48–
56]. Constant particle masses in the Jordan frame imply in the Einstein frame
a universal coupling ˇ for all massive particles, while �-dependent masses offer
more realistic perspectives. As compared to constant particle masses in extended
quintessence, coupled quintessence is a more general concept where the cosmon-
matter coupling can vary from one species to another. While the effective coupling
ˇn to nucleons has to be very small, more sizeable couplings to dark matter are
allowed .ˇdm . 0:1/, and the cosmon-neutrino coupling can be large, say ˇ� � 100.
Present data slightly favor a non-zero coupling, ˇ � 0:07 [57].

3.6 Slow Freeze Universe

In this section we briefly describe a simple scalar-tensor model with only three
cosmologically relevant dimensionless parameters [17]. It is based on the effective
action

� D
Z
d4x
p
g


��

2

2
RC

�
2

˛2
� 3

�
@��@��C V.�/

�
: (3.49)

The potential

V D �2�4

m2 C �2 ; 	 D
�2

m2
: (3.50)

shows a crossover between two scale invariant limits, one for �! 0with V � 	�4,
and the other for � ! 1 with V=�4 ! �2=�2 ! 0. The mass scales � and m
violate scale symmetry. We take

� D 2 
 10�33 eV (3.51)

and m � 106�. The Planck mass � being dynamical, no tiny dimensionless
parameter for the cosmological constant appears in this model.

For “late cosmology” after inflation we can approximate

V D �2�2: (3.52)

During radiation domination the universe shrinks [32] according to a de Sitter
solution with negative constant Hubble parameter

H D �˛
2
�: (3.53)
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In this period the value of the cosmon field � increases exponentially according to

Ps D P�
�
D ˛� ; � � exp.˛�t/: (3.54)

Due to the shrinking of the universe with scale factor a � 1=p� the energy density
in radiation increases � �2,

r D 3
�
˛2

4
� 1

�
�2�2; (3.55)

similar to the potential and kinetic energy in the homogeneous scalar field which
obey

h D V C 2

˛2
P�2 D 3�2�2: (3.56)

This results in a constant fraction of early dark energy [58, 59]

h

r C h D ˝e D 4

˛2
: (3.57)

While the temperature increases during radiation domination, T � .r / 14 � p�,
the particle masses increase even faster � �. The equilibrium number density of
a given species gets strongly Boltzmann-suppressed once a particle mass exceeds
T . With Fermi scale hhi � � and �QCD � �, as well as constant dimensionless
couplings, the decay rates scale � �, and all cross sections and interaction rates
scale with the power of � corresponding to their dimension. As a consequence,
nucleosynthesis proceeds as in usual cosmology, now triggered by nuclear binding
energies and the neutron-proton mass difference exceeding the temperature as �
increases. The evolution of all dimensionless quantities is the same as in standard
cosmology, once we measure time in units of the (decreasing) inverse nucleon
mass. The resulting element abundancies are essentially the same as in standard
cosmology. The only difference arises from the presence of a fraction of early
dark energy (3.57). This acts similarly to the presence of an additional radiation
component, resulting in a lower bound on ˛ from nucleosynthesis [3, 4, 60, 61].
Later on, protons and electrons combine to hydrogen once the atomic binding energy
(increasing� �) exceeds the temperatureT � p�. Up to small effects of early dark
energy the quantitative properties of the CMB-emission are the same as in standard
cosmology. The effect of early dark energy on the detailed distribution of CMB-
anisotropies gives so far the strongest bound on ˛; ˛ & 10 [62–67].

The ratio of matter to radiation energy density increases as m=r � �a, with
a � �� 1

2 during radiation domination .Ta D const:/. This triggers the transition to
a matter dominated scaling solution once m exceeds r , given again by a shrinking
de Sitter universe
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H D � ˛�

3
p
2
; Ps D ˛�p

2
; m D 2

3
.˛2 � 3/�2�2; (3.58)

with a constant fraction of early dark energy˝e D 3=˛2. Observations of redshifts
of distant galaxies are explained by the size of atoms shrinking faster than the
distance between galaxies [32, 68–70], resulting in an increase of the relevant ratio
� a�.

The transition to the present dark energy dominated epoch can be triggered by
neutrinos. Assume that the heavy singlet scale entering the neutrino masses by the
seesaw mechanism decreases with increasing �. Neutrino masses will then grow
faster than �, with positive

Q
.�/ D 1

2

@ ln
�
m�.�/=�

�
@ ln�

: (3.59)

The value of Q
 in the present epoch will be the third dimensionless cosmological
parameter of our model besides ˛ and �=m. Together with the present neutrino
mass it determines the present dark energy density.

In a rather recent cosmological epoch .z � 5/ the neutrinos become non-
relativistic. For Q
 � 1 the increase of their mass faster than � stops effectively
the time evolution of the cosmon field. The dark energy density h remains
frozen at the value it had at this moment, relating it to the average neutrino
mass. More precisely, the cosmological solution oscillates around a very slowly
evolving “average solution” for which the r.h.s. of Eq. (3.38) vanishes to a good
approximation, V D Q
� . This yields for the homogeneous dark energy density h
the interesting quantitative relation [40]


1
4

h D 1:27
� Q
m�

eV

� 1
4

10�3eV: (3.60)

(Present neutrino masses on earth may deviate from the value of m� according to
the cosmological average solution, due to oscillations and a reduction factor for
neutrinos inside large neutrino lumps [71, 72]. Cosmological bounds on m� are
modified due to the mass variation.)

For low redshift z . 5 cosmology is very similar to the �CDM-model with
an effective equation of state for dark energy (more precisely the coupled cosmon-
neutrino fluid) very close to �1,

w D �1C ˝�

˝h

D �1C m�.t0/

12eV
: (3.61)

An important observational distinction to the �CDM-model is the clumping of the
neutrino background on very large scales which may render it observable [71, 73–
75]. The parameter � in Eq. (3.51) obtains from the observed value of the present
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dark energy density
p
h D .2 
 10�3 eV/2 � pV D �M . This also fixes Q
m� D

6:15 eV.
Primordial cosmology corresponds to an inflationary epoch. Matter and radiation

play no role and we solve the field equations (3.38)–(3.40) with T�� D 0; q� D 0.
One finds a scaling solution without a big bang singularity that can be continued to
t ! �1,

� D
� �2m3

p
3˛2�t

� 1
3

; H D
��2�2
9˛2t

� 1
3

;
P�
�
D � 1

3t
: (3.62)

The spectrum of primordial density fluctuations generated during inflation will be
discussed below.

A universe shrinking during radiation and matter domination was much colder
in the past than the present background radiation. Its shrinking was very slow, with
jH j � ˛� only slightly faster than the present expansion rate. During inflation the
expansion was even slower, cf. Eq. (3.62). The typical time scale of the universe was
never much shorter than 1010 yr. Despite the unusual aspects of such a “slow freeze”
picture of the evolution of the universe no present observation is in contradiction to
it.

For a quantitative discussion of observables it is useful to perform a Weyl scaling
in order to bring this model to the form (3.3)–(3.6). In the Einstein frame the
potential decays exponentially for large '

V 0 D 	M4
h
1C exp

�˛'
M

�i�1
: (3.63)

Particle masses except for the neutrinos do not depend on ', while the cosmon-
neutrino coupling

ˇ D �M @ lnm�

@'
D � Q


˛
(3.64)

realizes growing neutrino quintessence.
A quantitative discussion of the spectrum of density fluctuations is straightfor-

ward in the Einstein frame. For the inflationary epoch, our model can be treated in
the slow roll approximation. For fluctuations corresponding to the present scale of
galaxies or clusters, which have crossed the horizonN e-foldings before the end of
inflation, one finds for the spectral index n

n D 1

2N
D 0:96� 0:967; (3.65)

while the tensor amplitude r is very small

r D 8

N 2˛2
< 3 
 10�5: (3.66)
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A realistic amplitude for the primordial density fluctuations is found for

�

m
D 5

N˛

 10�4: (3.67)

The spectrum of primordial density fluctuations of our model is compatible with
Planck-results [67].

Our model has no more free parameters than the �CDM-model and is therefore
subject to many observational tests. Its compatibility with all present observations
demonstrates how a simple modification of gravity can lead to a rather natural set-
ting with a unified description of inflation and present dark energy. The naturalness
of the simple quadratic potential for large �; V D �2�2, may look less obvious if the
model would be originally formulated in the Einstein frame with a potential (3.63).
While we could add a cosmological constant to V.�/ without affecting the late
time behavior for large �, an addition of a constant to Eq. (3.63) would drastically
change the late time cosmology. Thus the issue of naturalness of an asymptotically
vanishing cosmological constant looks very different in modified gravity (Jordan
frame) or the associated standard gravity (Einstein frame).

3.7 Modified Gravity with f .R/

Let us next discuss f .R/-theories, where Lg takes the form

Lg D �M
4

2
f .y/ ; y D R

M2
: (3.68)

We will see that they are equivalent to models of coupled quintessence with a
coupling ˇ D 1=

p
6. Due to their rather simple structure they are among the most

popular models of modified gravity [22, 76–84].
We start with a simple example where f contains terms linear and quadratic

in R,

� Œg��� D
Z
x

p
g


�cM2

2
R � ˛

2
R2
�
; f .y/ D cyC ˛y2: (3.69)

This includes the model used by A. Starobinski [18] in his early discussion of the
inflationary universe. It is straightforward to see that this model is equivalent to a
scalar model with

� Œ�; g��� D
Z
x

p
g

(
�cM2

2
R � ˛

2
R2 C ˛

2

�
�

˛
�R

�2)
: (3.70)
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Indeed, the scalar field equation,

ı�

ı�
D 0; (3.71)

has a general solution

� D ˛R: (3.72)

Reinsertion into the effective action yields Eq. (3.69). Expanding the last term in
Eq. (3.70) yields the equivalent scalar-gravity model

� Œ�; g��� D
Z
x

p
g


V.�/� M

2

2

�
c C 2�

M2

�
R

�
; (3.73)

with potential

V.�/ D 1

2˛
�2: (3.74)

At this stage the modified gravity model (3.69) has been transformed into a scalar-
tensor model (3.73).

We next perform a Weyl scaling with

w2 D 1

c C 2�

M2

; (3.75)

resulting in

� Œ�0; g0
��� D

Z
x

p
g0

V 0 � M

2

2

�
R0 � 3

2
.ln w2/I �.ln w2/I�

��
; (3.76)

with

V 0 D w4V D �2

2˛
�
c C 2�

M2

�2 : (3.77)

The canonical normalization of the scalar kinetic term obtains for

' D
r
3

2
M ln

�
c C 2�

M2

�
; (3.78)

corresponding to
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w2 D exp

(
�
r
2

3

'

M

)
: (3.79)

The modified gravity model appears now as a model of quintessence without any
modification of gravity,

� Œ'; g0
��� D

Z
x

p
g0

V 0 C 1

2
@�'@�' � M

2

2
R0
�
: (3.80)

The potential decays exponentially for large '

V 0.'/ D M4

8˛

 
1 � c exp

 
�
r
2

3

'

M

!!2
: (3.81)

We take ˛ > 0 such that the potential is bounded from below.
It is instructive to expand the potential for small '

V 0.'/ D M4

8˛

(
.1 � c/2 C

r
8

3
c.1 � c/ '

M
C 2

3
c.2c � 1/ '

2

M2
C : : :

)
: (3.82)

For c D 1 the leading term is the quadratic

V 0.'/ D M4

12˛
'2 C : : : (3.83)

with scalar mass given by

m' D Mp
6˛
: (3.84)

For ˛ of the order one this mass turns out to be of the order of the Planck mass.
In this case the scalar field settles very early in cosmology to the minimum of the
potential at ' D 0. Subsequently, the potential V 0 plays no role for late cosmology.
Cosmology is described by standard gravity coupled to a massive scalar field. The
situation is similar for the corresponding modification of gravity. The term� ˛R2 in
Eq. (3.69) can play a role during inflation [18], but is irrelevant for late cosmology.
If one wants to have the term� ˛R2 to play a role in the present cosmological epoch
one needs a huge value of ˛ such that ˛R becomes comparable to M2,

˛ � 1060: (3.85)

This points to a very general issue for f .R/-theories: The deviations from
Einstein’s equation play a role in present cosmology only if the expansion in
derivatives involves huge coefficients or diverges. In other words, any function f .y/
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which admits a Taylor expansion aroundf .y/with coefficients that are substantially
smaller than 1060 leads to modifications of gravity that are not observable in the
present cosmological evolution. This remark extends to more general effective
actions, involving, for example,R��R�� .

For c > 0 the potential has a minimum for a finite value of '

'min D
r
3

2
M ln c: (3.86)

We observe that at the minimum the effective cosmological constant vanishes

V 0.'min/ D 0: (3.87)

The scalar mass (3.84) is independent of c. For c < 0 the minimum of V 0 occurs
for ' !1, with

V.' !1/ D M4

8˛
: (3.88)

In this case the scalar mass vanishes in the asymptotic limit. A realistic effective
cosmological constant would require

˛ � 10120: (3.89)

A major problem for f .R/-models is the universal large coupling ˇ D 1=p6 of
the cosmon to all massive particles in the Einstein frame. Indeed, the Weyl scaling
will take for all f .R/-models the form (3.79). This implies for the nucleon mass in
the Einstein frame

m0
n D wmn D exp


� 1p

6

'

M

�
mn; (3.90)

resulting in a cosmon-nucleon coupling

ˇn D �M @

@'
lnm0

n D
1p
6
: (3.91)

Thus f .R/-theories are equivalent to coupled quintessence. In order to obey the
observational bound (3.34) on mn=M the cosmon is allowed to vary only by
a tiny amount since nucleosynthesis. Furthermore, unless the cosmon mass is
large enough, the large value ˇn D 1=

p
6 contradicts post-Newtonian gravity

measurements in the solar system. The cosmological scalar mass is typically very
small, however, if the modifications of gravity are important in present cosmology
(e.g. Eq. (3.84) with huge ˛). Due to this clash,realistic models need to invoke the
chameleon mechanism [36]. The combination of the absence of a Taylor expansion
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(with moderate coefficients) and the need for the chameleon mechanism limits
severely the choice of realistic functions f .y/. At the end, realistic functions are
very close to f .y/ D c0Cy, with c0 D 	=M4 related to the cosmological constant
	. In the next section we will sketch how part of these problems can be avoided for
f .R/ theories with field dependent particle masses.

We end this section by a short discussion of the general map from an f .R/-theory
to coupled quintessence. Consider a scalar-tensor theory with

� D
Z
x

p
gf��RC V.�/g: (3.92)

The solution of the field equation for the scalar field expresses �.R/ as a function
of R, given implicitly by

@V

@�
D R: (3.93)

For @2V=@�2 ¤ 0 this solution is unique. Insertion of �.R/ into the action (3.92)
yields an equivalent f .R/-theory (3.68) with

f

�
R

M2

�
D 2

M4

˚
R�.R/� V ��.R/��: (3.94)

By virtue of Eq. (3.93) the function f .y/ D f .R=M2/ obeys the relation

@f .y/

@y
D 2�.R/

M2
: (3.95)

The construction above associates to a given potential V.�/ an equivalent f .R/-
model. Inversely, for a given f .y/ Eqs. (3.94), (3.95) yield the potential V.�/ as a
Legendre transform

V.�/ D M4

2

�
y
@f .y/

@y
� f .y/

�
; (3.96)

with y.�/ given by Eq. (3.95). This holds provided Eq. (3.95) has a unique solution,
i.e. for @2f=@y2 ¤ 0.

A Weyl scaling brings finally the action (3.92) to the standard form (3.80). Due
to the absence of a kinetic term in Eq. (3.92) the dependence of the conformal factor
w on the normalized scalar field ' is universal,

w2 D M2

2�
D exp

(
�
r
2

3

'

M

)
: (3.97)
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As a consequence, f .R/-theories with constant particle masses are found to be
equivalent to coupled quintessence, with a universal coupling ˇ D 1

p
6 given

by Eq. (3.91). For the normalized scalar field in the Einstein frame the potential
is related to f .y/ by

V 0.'/ D M2

2

Rf 0 � f
.f 0/2

: (3.98)

As an example, we may consider

f .y/ D f0y
 : (3.99)

Equation (3.95) implies
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f0M
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f0M2

� 1

�1

; (3.100)

and the potential in the scalar-tensor model reads

V.�/ D M4.
 � 1/
2

f .y/ D M4.
 � 1/f0
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f0M2
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: (3.101)

Weyl scaling leads in the Einstein frame to an additional factor .M2=2�/2 for V 0,
such that

V 0 D M4.
 � 1/
2


.
f0/
� 1

�1

�
M2

2�

�1� 1

�1

: (3.102)

For the particular “critical” value 
 D 2 the potential V 0 is constant. For 1 <

 < 2 the minimum of V 0 occurs for � D 0, V 0.� D 0/ D 0. On the other hand,
for 
 > 2 the potential takes its minimal value for � !1, with

V 0.� !1/ D 0: (3.103)

With

� D M2

2
exp

(r
2

3

'

M

)
(3.104)

the limit � ! 1 corresponds to ' ! 1 and we observe that the potential V 0.'/
decays to zero exponentially. These models are of the same type as the one discussed
in Sect. 3.6, using in (3.49) the identifications � D 2�2, ˛2 D 2=3, and V.�/ D
V 0.� D 2�2/.
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We observe that the addition of a cosmological constant N	c in the effective action
for modified gravity results in

f .y/ D f0y˛ � e0; N	c D e0M
4

2
: (3.105)

After Weyl scaling this adds to V 0 a part

�V 0 D e0M
8

8�2
: (3.106)

This becomes irrelevant for large �. Modified gravity theories with 
 > 2 are an
example for a self-tuning of the cosmological constant to zero as a consequence of
the asymptotic cosmological solution for large time.

For 
 D 1 one has Einstein gravity without an additional scalar degree of
freedom. For 0 < 
 < 1 and f0 > 0 the potential V 0 is negative, diverging for
� ! 0. For negative f0 one finds negative � such that the gravitational constant
would have a wrong sign, leading to instability. The range 0 < 
 < 1 does not
seem to lead to a reasonable cosmology. We may, however, consider the values

 < 0, f0 < 0, with positive 
f0 and �. The potential V 0 is now again positive,
decaying to zero for � !1. The behaviour is similar as for 
 > 2 and f0 > 0. We
conclude that f .R/-models could lead to interesting cosmologies with a dynamical
self-tuning of the cosmological constant to zero if all particles are massless. For
massive particles one has to find a way to avoid the universal large cosmon-matter
coupling ˇ D 1=p6, as we will discuss in the next section.

3.8 f .R/-Gravity with Varying Particle Masses

Having established the equivalence between f .R/-models and scalar-tensor theo-
ries a simple solution of the problem of a too large cosmon-matter coupling becomes
visible. One may follow the strategy (i) in Sect. 3.5: If particle masses scale

p
� in

the Jordan frame, their mass will be constant in the Einstein frame, implying ˇ D 0.
Realistic models may therefore be found if the particle masses show an appropriate
effective field dependence in the Jordan frame.

Let us consider the quarks and charged leptons. In the standard model of particle
physics their masses are proportional to the expectation value h0 of the Higgs
doublet h. For cosmology, h0 is replaced by the value of h according to the
cosmological solution. If this solution implies that h0 scales proportional to

p
�

we will find a vanishing cosmon-matter coupling ˇ D 0 in the Einstein frame.
To be specific, we consider a first model where the effective action for gravity

and the Higgs doublet is given by
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)
: (3.107)

The parameters a and � are dimensionless, such that scale symmetry is violated only
by the parameter � with dimension of mass. The function f .y/ is quadratic in y,
with field dependent coefficient of the linear term,

f D a
�
y � 2�2=M2

2�

�2
C 2h�h

M2

�
y � 2�2=M2

2�

�
: (3.108)

We emphasize that the Planck mass M is not a parameter of the model (3.107). In
Eq. (3.108) it is merely introduced by the conventions for y and f .

According to Eq. (3.95) the relation between � and R reads

� D a

4�2
.R � 2�2/C h�h

2�
; (3.109)

and the corresponding potential of the equivalent scalar-tensor model becomes

V D 1

2a
.h�h � 2��/2 C 2�2�: (3.110)

Identifying 2� D �2 we can associate the first term in Eq. (3.110) with Eq. (3.45),
for �h � � and 	h � 1=a. For h D h0 the potential becomes V D 2�2� D �2�2,
which coincides for large � with the potential (3.50).

In the Einstein frame the Higgs doublet is rescaled according to

h0 D wh ; w2 D M2

2�
: (3.111)

This yields for the potential

V 0 D 1

2a
.h

0�h0 � �M2/2 C �2M4

2�
: (3.112)

It is obvious that h0 settles to a constant value at the minimum of V 0, implying
constant particle masses if the dimensionless Yukawa couplings are constant,ˇ D 0.

The kinetic terms for h0 and � in the Einstein frame read

Lkin D Zh

2

˚
@�h

0�@�h
0 C 1

2
@� ln � @�.h

0�h0/
�

C1
8
.6M2 CZhh0�h0/@� ln� @� ln �: (3.113)
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For constant h
0�h0 D �M2 the remaining kinetic term for � becomes

Lkin D M2

8
.6CZh�/@� ln � @� ln�: (3.114)

Neglecting the contribution� Zh� (see below) the normalized scalar field is related
to � by Eq. (3.104) and Eq. (3.79) remains valid. For h0 D h0

0 the potential decays
exponentially

V 0 D �2M2 exp
�
�˛'
M

�
; ˛ D

r
2

3
: (3.115)

The value of ˛ is too small for allowing for the scaling solutions with constant
early dark energy fraction ˝e < 1. This issue is related to the absence of a kinetic
term for � in Eq. (3.73) or (3.92). For initial values of �in much smaller than M2

the universe becomes scalar dominated long before the present epoch, leading to
unrealistic cosmology. For �in � M2 the scalar potential will play a role only in
the far future and the model cannot account for dark energy. Realistic cosmology
requires a particular initial value with �in close to M2=2. Cosmology is then of the
type of “thawing quintessence”. The need for a particular choice of initial conditions
makes the model perhaps less attractive than the scaling solution found in the model
of Sect. 3.6.

Despite this shortcoming, the simple model (3.107) offers an interesting perspec-
tive on a dynamical fine tuning of the cosmological constant. Indeed, the effective
cosmological constant vanishes asymptotically in the Einstein frame, even if we add
an additional constant to the modified gravitational action (3.107). In the Einstein
frame the resulting contribution to V 0.'/ decays exponentially for large '. Scale
symmetry becomes exact for ' ! 1 and the cosmon corresponds in this limit to
the dilaton, the Goldstone boson associated to the spontaneous breaking of scale
symmetry.

It is also interesting to discuss the issue of dilatation symmetry in the framework
of f .R/-models. For � D 0 the effective action (3.107) is scale invariant. The
potential in the Einstein frame (3.110) has then one exactly massless direction,
realizing the Goldstone boson. This demonstrates how the expected Goldstone
boson arises in a model (3.107) that does not contain an explicit scalar singlet degree
of freedom.

The model (3.107) contains large dimensionless parameters. The Fermi scale is
given by the canonically normalized doublet in the Einstein frame, hR D Z1=2

h h0
0 D

175GeV. This implies �h D Zh� D .hR=M/2 � 5 
 10�33. The renormalized
quartic Higgs coupling is 	h D 1=.aZ2

h/, such that the prefactor ofR2 in Eq. (3.107)
becomes a=.8�2/ D 1=.8	h�2h/ � 1064=.2	h/, similar in size to Eq. (3.85).

More reasonable couplings arise if one associates h with a scalar field in some
grand unified theory instead of the Higgs doublet. In this event �h could be roughly
of the order one. The effective quark and lepton masses are then suppressed by the
gauge hierarchy, i.e. the ratio between the Fermi scale and the scale h0 which is
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now characteristic for grand unification. If gauge couplings take a fixed value for
momenta given by h also the QCD-confinement scale and therefore the nucleon
masses are proportional to h, completing our mechanism for vanishing ˇ. If h is
associated with a field characteristic for grand unification the parameter a=�2 can be
taken to be of the order one, such that the prefactor of the term � R2 in Eq. (3.107)
is of the order one. In this case, however, � is given essentially by h�h=.2�/ and
the term � R2 in Eq. (3.107) plays only a negligible role. (The limit a ! 0 has no
qualitative influence on the late cosmology of this model.)

As a second example we consider a family of models

� D
Z
x

p
g


�.R2 C / 
2 C N	c � 1

2�
h�hRC Zh

2
@�h�@�h

�
: (3.116)

The relation between �; h and R reads

x D �
 Q�y.y2 C Q/ 
2 �1; (3.117)

with

x D 2�� � h�h
2M2�

; y D R

M2
; Q� D �M2
�4 ; Q D 

M4
: (3.118)

In terms of � the effective action becomes

� D
Z
x

p
g


��RC V.�; h/C Zh

2
@�h�@�h

�
; (3.119)

where

V DM4 Q�.y2 C Q/ 
2 �1 ˚ QC .1 � 
/y2�C N	c; (3.120)

and y is related to � and h by Eq. (3.117). After Weyl scaling the effective action
for the metric and the scalars � and h0 takes a standard form

� D
Z
x

p
g0

�M

2

2
R0 C V 0.�; h0/CLkin

�
; (3.121)

with

V 0.�; h0/ D M4V

4�2
; (3.122)

and Lkin given by Eq. (3.113). Again, y is related to x by Eq. (3.117) with
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x D �.�M2 � h0�h0/
�M4

: (3.123)

We may next investigate the field equation for h0. One finds a static solution

with h
0�
0 h

0
0 D �M2 provided V.x/ has its minimum for x D 0. Particle masses are

then constant in the Einstein frame, ˇ D 0. Inserting h
0�h0 D �M2 and assuming

y.x D 0/ D 0 the potential gets a simple form

V 0 D M4

4�2

� N	c C � 

2

�
: (3.124)

For positive V0 D N	c C �
=2 it decays to zero for � ! 1. For a canonical scalar
field (neglecting the term Zh� in Eq. (3.114)) the potential decays exponentially

V 0 D V0 exp
�
�˛'
M

�
; ˛ D

r
8

3
: (3.125)

Again, this value of ˛ is too small in order to realize the scaling solution with ˝e <

1. Cosmology is similar to our first example, with realistic thawing quintessence
realized for initial values �in close to 1060

p
V0.

We notice that cosmology is the same for all ranges of 
; � and  for which V
has its minimum for x D 0. For  > 0 the effective action (3.116) and the potential
V are analytic. A special case occurs for  D 0 which is similar to the model (3.99)
except for the additional coupling to h. The potential is no longer analytic

V DM4 Q�.1 � 
/jyj
 C N	c DM4 Q�.1 � 
/
ˇ̌
ˇ̌ x

 Q�
ˇ̌
ˇ̌




�1

C N	c: (3.126)

For  > 0 the potential (3.126) describes the behavior for large y2 � Q. We observe
that for 
 < 1 the limit x ! 0 can be reached for jyj ! 0 or jyj ! 1. If the
potential minimum corresponds to the second case the value V0 D N	c may only be
reached for asymptotic time t !1.

We conclude that the problematic universal cosmon-matter coupling ˇ in the
Einstein frame can be avoided if f .R/-theories allow for a suitable field dependence
of particle masses. The other generic problem of f .R/-models, namely the need of
large couplings multiplying the terms in a Taylor expansion of f .y/, will need a
particular physics explanation which produces and stabilizes such large couplings
appearing in the effective action. (In the generic case quantum fluctuations lead to a
very fast running of very large dimensionless couplings, typically bringing them to
values of the order one or making them divergent.) At present, we are still far from
constructing an f .R/-model which would show a similar simplicity as the scalar-
tensor theory discussed in Sect. 3.6. The benefit would be, of course, that no explicit
scalar field � is needed in modified gravity.
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3.9 Non-local Gravity

For non-local gravity (see [85] for a recent review and references) the action
involves the inverse of the covariant Laplacian D , or similar operators that grow
strongly for small covariant momenta. As a consequence, such modifications of
gravity can play a role at long distances, without invoking very large dimensionless
parameters as ˛ in the preceding section. Already the first non-local gravity model
in this spirit [86] has noted the equivalence to a model of a scalar field coupled to
gravity.

Let us consider the effective action [86]

Lg D M2

2


�RC �2

2
RD�1R

�
; (3.127)

with covariant derivativeD� and covariant Laplacian

D D �D�D�: (3.128)

(In order to make Eq. (3.127) well defined one has to regularize the operator D�1
[86].) The model (3.127) admits an equivalent formulation as a scalar-tensor model
with effective action

� D
Z
x

p
g


�M

2

2
.1C ��/R � M

2

4
@��@��

�
: (3.129)

Indeed, the field equation for �,

D� D �D�D�� D ��R; (3.130)

expresses � as a functional of the metric,

� D ��D�1R: (3.131)

Inserting the formal solution (3.131) into the action (3.129) yields the equivalent
effective action (3.127) of non-local gravity.

The scalar-tensor theory (3.129) can be brought to the standard form of a coupled
quintessence model by use of a Weyl scaling with

w D .1C ��/� 1
2 : (3.132)

The resulting kinetic term,

Lkin D M2

4

�
3�2

.1C ��/2 �
1

1C ��
�
@��@��; (3.133)
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can be cast into a standard normalization (3.6) by defining ' with

@'

@�
D Mp

2.1C ��/
p
3�2 � .1C ��/: (3.134)

The potential vanishes for this model, similar to Brans-Dicke theory.
The Weyl scaling typically leads to coupled quintessence. Consider non-local

modified gravity (3.127) and a particle with constant mass m. One obtains in
the Einstein frame a '-dependent mass, m0 D w.'/m. Defining the '-dependent
coupling ˇ.'/ by

ˇ.'/ D �M @ lnm0

@'
(3.135)

one obtains

ˇ D


6 � 2

�

�
� C 1

�

��� 1
2

; (3.136)

where � can be expressed in terms of ' using Eq. (3.134).
We observe that stability requires a positive effective Planck mass and a positive

kinetic term (3.133), which is realized for the range

0 	 1C �� 	 3�2: (3.137)

In this range ˇ is well defined. The minimum value for ˇ is

ˇmin D 1p
6
; (3.138)

resembling a Brans-Dicke theory with ! D 0. Such a large coupling is not
compatible with observation, such that the model (3.127) is not phenomenologically
viable [86].

In summary, the gravitational part of non-local gravity models has no problem
of consistency. It is equivalent to standard gravity coupled to a massless scalar,
similar to Brans-Dicke theory. Adding relativistic particles as photons remains
unproblematic. Issues of compatibility with observation arise, however, if massive
particles are considered within non-local gravity. The coupling between the scalar
field and massive particles typically turns out to be unacceptably large.

One may construct large classes of consistent non-local gravity models by
starting from a local scalar-tensor model that only contains terms linear and
quadratic in �. Such generalizations of Eq. (3.129) can contain higher derivatives
of �, a coupling of � to higher order curvature invariants, terms � R@��@�� or
� R��@��@�� etc. The field equations for � involve terms linear in � as well
as a �-independent “source term”. The general solutions are functionals of the
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metric. Inserting these solutions into the action yields consistent models of non-
local gravity. Consistency does not imply compatibility with observation, however.
It seems not easy to avoid a too large coupling between the scalar field and massive
particles in the Einstein frame.

While non-local modifications of gravity are consistent, it is not easy to motivate
why the quantum effective action for gravity should have this form. Unless one
can identify some quantum effect producing such non-localities they may not
look very natural, however. For the moment, the only physically well motivated
origin of non-localities of the type discussed in this section that is known to us
arises from the exchange of an effective massless degree of freedom, similar to
the Coulomb interaction between electrons or the Newtonian interaction between
massive particles. In this event it seems much simpler to use directly a field for the
exchanged particle.

3.10 Higher Derivative Modified Gravity with Second Order
Field Equations

We have seen that f .R/-theories and a large class of non-local gravity theories can
be mapped to a quintessence model,

� D
Z
x

p
g0

�1
2
M2R0 C 1

2
@�'@�' C V.'/

�
; (3.139)

by an appropriate Weyl scaling. One may ask how large is the class of modified
gravity theories that can be mapped to the simple action (3.139) by suitable field
transformations. (See [87,88] for earlier work on this issue.) A large class of actions
involving higher derivatives, that nevertheless lead to second order field equations,
has been found by Horndeski [15]. One would like to know if they are equivalent to
the action (3.139).

Part of the answer can be given by considering general field transformations

' D v.�;R; @��@��; : : : /; (3.140)

g0
�� D w�2.�;R; @��@��; : : : /g�� C s1.�;R; @��@��; : : : /@��@��

Cs2.�;R; @��@��; : : : /R�� C : : :

Here v;w; s1; s2 are functions of various possible scalars that can be formed from
� and g�� 0, with dots standing for additional scalars as R��R�� , @��@��R�� etc.
We only require that the objects on the r.h.s. of Eq. (3.140) have the correct tensor
transformation properties.

It is obvious that a very large class of effective actions for modified gravity can
be constructed by inserting Eq. (3.140) into Eq. (3.139).
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� Œ�; g��� D �
�
'Œ�; g��� ; g

0
� Œ'; g���

	
: (3.141)

All these models have as physical degrees of freedom a scalar coupled to the
graviton. Even though these actions can contain an arbitrary number of derivatives,
the field equations will finally be second order field equations, equivalent to those
derived from the action (3.139). The requirement of equivalence imposes, however,
some mild conditions on the functions appearing in Eq. (3.140). What is needed is
the invertibility of the variable transformation (3.140).

We may demonstrate this explicitly for transformations with s1 D s2 D 0. The
field equations for the transformed action,

@�

@�.x/
D 0 ; @�

@g��.x/
D 0; (3.142)

can be expressed as (@ stands here for functional derivatives)

Z
y

(
@�

@g0
��.y/

@w�2.y/
@�.x/

g��.y/C @�

@'.y/

@v.y/

@�.x/

)
D 0; (3.143)

and

Z
y

(
@�

@g0
� .y/

@w�2.y/
@g��.x/

g� .y/C w�2.y/
@�

@g0
��.x/

ı.y � x/

C @�

@'.y/

@v.y/

@g��.x/

�
D 0: (3.144)

Obviously, the solutions of the field equations of the action (3.139),

@�

@'.y/
D 0 ; @�

@g0
��.y/

D 0; (3.145)

are also solutions of the field equations (3.142). The conditions on the functions w
and v have to ensure that no additional “spurious” solutions are generated by the
transformation (3.140).

Consider, for example, the case w D 1. Then the matrix @v.y/=@�.x/ should be
invertible, such that Eq. (3.143) implies @� =@'.y/ D 0. Invertibility means that a
functionH.x; z/ exists such that

Z
x

@v.y/

@�.x/
H.x; z/ D ı.y � z/: (3.146)
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For w D 1 the gravitational field equation (3.144) reads

@�

@g0
��.x/

C
Z
y


@�

@'.y/

@v.y/

@g��.x/

�
D 0: (3.147)

The second term vanishes for invertible @v.y/=@�.x/ since ı� =ı'.y/ D 0,
such that both field equations (3.145) must be obeyed necessarily. Similarly,
we may consider v D � and an invertible matrix @g0

� .y/=@g��.x/. The field
equation (3.144) implies then @� =@g0

��.x/ D 0, such that Eq. (3.143) guarantees
@� =@'.x/ D 0. Again, the field equations (3.145) must be necessarily obeyed.
This generalizes to arbitrary transformations g� .y/

�
g��.x/

	
, as in Eq. (3.140).

Invertible transformations with v D � or w D 1 can be combined to yield
more general invertible transformations. We conclude that invertibility of the
transformation (3.140) guarantees the absence of spurious solutions, such that the
effective action � Œg��; �� is fully equivalent to � Œg0

��; '� given by Eq. (3.139).
It may be instructive to discuss two simple examples of field transformations

with w D 1. For the first we take ' D v.�;R/, such that

@v.y/

@�.x/
D @v

@�

�
�.x/;R.x/

�
ı.y � x/: (3.148)

If @v=@� is non-vanishing for all � and R the transformation is invertible. On the
other hand, if @v=@� D 0 has a solution �0.R/, the configuration � D �0.R/ solves
the field equation @� =@�.x/ D 0 without being a solution of Eq. (3.145). This is an
example of a spurious solution. A second example with a spurious solution is

'.x/ D m�3��I� �.x/Cm2�.x/
�
�.x/: (3.149)

While the solutions (3.145) remain solutions of the field equations (3.142), addi-
tional solutions of Eq. (3.142) are provided by �I��Cm2� D 0. This model can still
be cast into the form of an action with at most two derivatives, involving two scalar
fields. Besides the solutions (3.145) one has new solutions for non-zero values of a
free massive scalar field with mass m. (The last term in Eq. (3.144) ensures that the
energy momentum tensor of the second scalar field is induced in the gravitational
field equation.) Many transformations with higher derivatives are invertible and do
not lead to spurious solutions, however.

It remains an interesting question if invertible transformations of the type (3.140)
are sufficient in order to show the equivalence of a large class (or all) of Horndeski’s
models with the effective action (3.139). This seems very likely to us for models that
contain no further physical degrees of freedom besides a scalar and the graviton.
The effective action (3.141) obtained by inserting Eq. (3.140) into Eq. (3.139) may
even lead to still larger classes of higher derivative modified gravity for which all
cosmological solutions can be obtained from second order field equations. Further
generalizations are possible if one adds scalar, vector or tensor fields with no more
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than two derivatives to Eq. (3.139), and subsequently makes a field transformation
of the type (3.140).

The field transformations (3.140) are a convenient way to construct effective
actions (3.141) that only involve second order field equations for the scalar-graviton
system. This does not mean that all models based on an action (3.141) are equivalent
to those based on the action (3.139). The field transformations also affect the matter
part Lm. Consider a model where matter is minimally coupled to the metric g��
and particle masses are �-independent. It becomes typically a model of coupled
quintessence with non-minimal gravitational interactions once written in terms of
g0
�� and '. The inverse of the transformation (3.140), which maps the action (3.141)

onto (3.139), can induce in the matter and radiation sector a complicated dependence
on ' and g0

�� . Even if we approximate Lm in the generalized Jordan frame (3.141)
by free massive or massless particles, non-trivial interactions will appear in the
Einstein frame (3.139). This is the way how the functions v;w; s1; s2 in Eq. (3.140)
can affect the predictions for observations. Similar to f .R/-models also, the much
more general class of models (3.141) encounters often problems with too large
effective couplings� ˇ in the Einstein frame.

Conclusions
Can one distinguish modified gravity from dark energy by observation?
In view of the equivalence of a large class of modified gravity models
with coupled quintessence an answer to this question is not straightforward.
Statements that modified gravity and quintessence lead to different growth
factors for cosmic structures apply only to quintessence models without
coupling to matter. We have seen, however, that the quintessence models
that are equivalent to modified gravity typically have a nonzero coupling ˇ
between the cosmon and different forms of matter. (This coupling needs not
to be the same for all species of massive particles.) In this view precision
measurements of the growth rate can differentiate between uncoupled and
coupled quintessence and determine bounds on ˇ. The issue if there are
modified gravity models that can be distinguished observationally from
coupled quintessence is much harder to answer.

Modified gravity models almost always involve new degrees of freedom
besides the graviton. This is a consequence of the fact that models for a
massless spin two particle are severely constrained by consistency require-
ments. The conjecture that consistency requires diffeomorphism symmetry
(more precisely its unimodular subgroup) has never been proven, but no
counter examples are known either. A model containing a massless spin two
particle as the only degree of freedom is then rather close to general relativity.
Modifications of gravity therefore typically involve additional degrees of
freedom, as scalars or massive spin two particles.

(continued)
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The field description of the additional degrees of freedom is not unique. For
example, a scalar may be described as a component of the metric (modified
gravity) or by a separate field (quintessence). Very large classes of models can
be mapped onto each other by non-linear field transformations. Field relativity
states that observables cannot depend on the choice of fields. For models
related by field transformations no observational distinction is possible. We
have seen that this holds for variable gravity models where the Planck mass is
field dependent. It also applies to f .R/-models and large classes of non-local
gravity. Very general models equivalent to coupled quintessence models have
been discussed in the preceding section.

For all these models modified gravity and coupled quintessence should
merely be seen as two different pictures describing the same reality, in
analogy to the Jordan frame and Einstein frame for the metric. For practical
computations of the evolution of homogeneous cosmology and fluctuations
around this background the simplest way uses the Einstein frame. This holds
both for the linear treatment of fluctuations and for numerical simulations in
the non-linear regime. The physical effects of the cosmon-matter coupling ˇ
are intuitively accessible in the Einstein frame.

For modified gravity models that are equivalent to coupled quintessence
one may ask: why then discuss them at all? If there is no observational
distinction, the discussion of such modifications of gravity may at first
sight look like a redundant exercise. A deeper answer concerns questions of
simplicity and naturalness. Models of modified gravity can be very simple
and involve no unnatural parameters. Nevertheless, the equivalent description
in the Einstein frame by coupled quintessence may hide simplicity and
naturalness in the complexity of the field transformation. An example is the
big bang singularity. We have presented in Sect. 3.6 a modified gravity model
for which the “beginning” of the universe is very slow and cold. It has no big
bang singularity, the cosmological solution can be continued to the infinite
past t ! �1. In the Einstein frame the same model is described as a hot
big bang. Models may be regular in the Jordan frame and show a big bang
singularity in the Einstein frame. This singularity is then due to a singularity
in the field transformation [32], in close analogy to a coordinate singularity.

The question of naturalness is often closely linked to symmetries. Scale
symmetry is explicitly visible in the modified gravity description of the
models in Sects. 3.5 and 3.6. It is realized by a multiplicative rescaling of
the metric and the scalar field �. In the presence of quantum fluctuations scale
symmetry is violated by �-dependent (“running”) dimensionless couplings.
For fixed points of the running exact (quantum-) scale symmetry is restored.
For the quantum effective action (3.49) such fixed points are present for
�! 0 and �!1 [17].

(continued)
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In our model in Sect. 3.6 the asymptotic value

	1 D lim
�!1V.�/=�4 (3.150)

vanishes for the fixed point at � ! 1. This can be motivated by properties
of a possible ultraviolet fixed point in dilaton quantum gravity [89] or by
dilatation symmetry in higher dimensions [90,91]. The fixed point with 	1 D
0 is the deeper reason why the cosmological constant vanishes asymptotically
in the Einstein frame, lim'!1 V 0.'/ ! 0. Without this understanding of
naturalness as a consequence of fixed point properties one would argue in
the Einstein frame that naturalness suggests the addition of a constant to
Eq. (3.63). Apparently convincing qualitative arguments on the induction of
a cosmological constant by quantum fluctuations in the Einstein frame yield
very different results when applied in the Jordan frame. A constant term in
V.�/ yields a term V 0.'/ � exp.�2˛'=M/ in the Einstein frame which
vanishes for ' ! 1. This is one more example how modified gravity can
shed new light on questions of naturalness.

The possibility of field transformations from modified gravity theories to
coupled quintessence models in the Einstein frame is an extremely useful tool
for the discussion of observational consequences of a model. It should not
prevent us, however, to look for modified gravity theories distinguished by
simplicity and naturalness.
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Chapter 4
The Effective Field Theory of Inflation/Dark
Energy and the Horndeski Theory

Shinji Tsujikawa

Abstract The effective field theory (EFT) of cosmological perturbations is a useful
framework to deal with the low-energy degrees of freedom present for inflation
and dark energy. We review the EFT for modified gravitational theories by starting
from the most general action in unitary gauge that involves the lapse function
and the three-dimensional geometric scalar quantities appearing in the Arnowitt-
Deser-Misner (ADM) formalism. Expanding the action up to quadratic order in
the perturbations and imposing conditions for the elimination of spatial derivatives
higher than second order, we obtain the Lagrangian of curvature perturbations
and gravitational waves with a single scalar degree of freedom. The resulting
second-order Lagrangian is exploited for computing the scalar and tensor power
spectra generated during inflation. We also show that the most general scalar-
tensor theory with second-order equations of motion—Horndeski theory—belongs
to the action of our general EFT framework and that the background equations of
motion in Horndeski theory can be conveniently expressed in terms of three EFT
parameters. Finally we study the equations of matter density perturbations and the
effective gravitational coupling for dark energy models based on Horndeski theory,
to confront the models with the observations of large-scale structures and weak
lensing.

4.1 Introduction

The inflationary paradigm, which was originally proposed to solve a number
of cosmological problems in the standard Big Bang cosmology [1, 2], is now
widely accepted as a viable phenomenological framework describing the accelerated
expansion in the early Universe. In particular, the Cosmic Microwave Background
(CMB) temperature anisotropies measured by COBE [3], WMAP [4], and Planck
[5] satellites support the slow-roll inflationary scenario driven by a single scalar
degree of freedom. Inflation generally predicts the nearly scale-invariant primordial
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power spectrum of curvature perturbations [6], whose property is consistent with
the observed CMB anisotropies. In spite of its great success, we do not yet know the
origin of the scalar field responsible for inflation (dubbed “inflaton”).

The observations of the type Ia Supernovae (SN Ia) [7, 8] showed that the
Universe entered the phase of another accelerated expansion after the matter-
dominated epoch. This has been also supported by other independent observations
such as CMB [4] and Baryon Acoustic Oscillations (BAO) [9]. The origin of the
late-time cosmic acceleration (dubbed “dark energy”) is not identified yet. The
simplest candidate for dark energy is the cosmological constant�, but if it originates
from the vacuum energy appearing in particle physics, the theoretical value is
enormously larger than the observed dark energy scale [10,11]. There is a possibility
that some scalar degree of freedom (like inflaton) is responsible for dark energy [12].

Although many models of inflation and dark energy have been constructed in
the framework of General Relativity (GR), the modification of gravity from GR can
also give rise to the epoch of cosmic acceleration. For example, the Starobinsky
model characterized by the Lagrangian f .R/ D R C R2=.6M2/ [1], where R is
a Ricci scalar and M is a constant, leads to the quasi de Sitter expansion of the
Universe. The recent observational constraints on the dark energy equation of state
wDE D PDE=DE (where PDE and DE is the pressure and the energy density of dark
energy respectively) imply that the region wDE < �1 is favored from the joint data
analysis of SN Ia, CMB, and BAO [5, 13, 14]. If we modify gravity from GR, it is
possible to realize wDE < �1 without having a problematic ghost state (see [15] for
reviews).

Given that the origins of inflation and dark energy have not been identified yet, it
is convenient to construct a general framework dealing with gravitational degrees
of freedom beyond GR. In fact, the EFT of inflation and dark energy provides
a systematic parametrization that accommodates possible low-energy degrees of
freedom by employing cosmological perturbations as small expansion parameters
about the Friedmann-Lemaître-Robertson-Walker (FLRW) background [16–18].
This EFT approach allows one to facilitate the confrontation of models with the
cosmological data.

Originally, the EFT of inflation was developed to quantify high-energy
corrections to the standard slow-roll inflationary scenario [19]. Expanding the action
up to third order in the cosmological perturbations, it is also possible to estimate
higher-order correlation functions associated with primordial non-Gaussianities
[20]. The EFT formalism was applied to dark energy in connection to the
large-distance modification of gravity [21–33]. The advantage of this approach
is that practically all the single-field models of inflation and dark energy can be
accommodated in a unified way.

Starting from the most general action that depends on the lapse function and
other geometric three-dimensional scalar quantities present in the ADM formalism,
Gleyzes et al. [28] expanded the action up to quadratic order in cosmological
perturbations of the ADM variables. In doing so, the perturbation ı� of a scalar
field � can be generally present, but the choice of unitary gauge (ı� D 0) allows
one to absorb the field perturbation in the gravitational sector. Once we fix the gauge
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in this way, introducing another scalar-field perturbation implies that the system
possesses at least two-scalar degrees of freedom. In fact, such a multi-field scenario
was studied in [33] to describe both dark energy and dark matter.

By construction, the EFT formalism developed in [16, 17, 28] keeps the time
derivatives under control, while the spatial derivatives higher than second order
are generally present. Imposing conditions to eliminate these higher-order spatial
derivatives for the general theory mentioned above, Gleyzes et al. [28] derived
the quadratic Lagrangian of cosmological perturbations with one scalar degree of
freedom. If the scalar degree of freedom is responsible for inflation, for example, the
resulting power spectrum of curvature perturbations can be computed on the quasi
de Sitter background (along the same lines in [34–38]). In this review, we evaluate
the inflationary power spectra of both scalar and tensor perturbations expressed in
terms of the ADM variables.

In 1973, Horndeski derived the action of the most general scalar-tensor theories
with second-order equations of motion [39]. This theory recently received much
attention as an extension of (covariant) Galileons [40–42]. One can show that the
four-dimensional action of “generalized Galileons” derived by Deffayet et al. [43]
is equivalent to the Horndeski action after a suitable field redefinition [35]. Gleyzes
et al. [28] expressed the Horndeski Lagrangian in terms of the ADM variables
appearing in the EFT formalism. This allows one to have a connection between
the Horndeski theory and the EFF of inflation/dark energy. In fact, it was shown that
Horndeski theory belongs to a sub-class of the general EFT action [28].

For the background cosmology, the EFT of inflation/dark energy is characterized
by three time-dependent parameters f , �, and c [16–18]. This property is useful
to perform general analysis for the dynamics of dark energy [30]. In the EFT
of dark energy, Gleyzes et al. [28] obtained the equations of linear cosmological
perturbations in the presence of non-relativistic matter (dark matter, baryons). This
result reproduces the perturbation equations in Horndeski theory previously derived
in [44]. We note that the perturbation equations in the presence of another scalar field
(playing the role of dark matter) were also derived in [33]. These results are useful
to confront modified gravitational models of dark energy with the observations of
large-scale structures, weak lensing, and CMB.

In this lecture note, we review the EFT of inflation/dark energy following the
recent works of [28, 33].

In Sect. 4.2 we start from a general gravitational action in unitary gauge and
derive the background equations of motion on the flat FLRW background.

In Sect. 4.3 we obtain the linear perturbation equations of motion and discuss
conditions for avoiding ghosts and Laplacian instabilities of scalar and tensor
perturbations.

In Sect. 4.4 the inflationary power spectra of scalar and tensor perturbations
are derived for general single-field theories with second-order linear perturbation
equations of motion.

In Sect. 4.5 we introduce the action of Horndeski theory and express it in terms
of the ADM variables appearing in the EFT formalism.
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In Sect. 4.6 we discuss how the second-order EFT action accommodates
Horndeski theory as specific cases and provide the correspondence between them.

In Sect. 4.7 we apply the EFT formalism to dark energy and obtain the back-
ground equations of motion in a generic way. In Horndeski theory, the equations of
matter density perturbations and the effective gravitational coupling are derived in
the presence of non-relativistic matter.

The final section is devoted to conclusions.
Throughout the paper we use units such that c D „ D 1, where c is the speed of

light and „ is reduced Planck constant. The gravitational constantG is related to the
reduced Planck mass Mpl D 2:4357� 1018 GeV via 8�G D 1=M2

pl. The Greek and
Latin indices represent components in space-time and in a three-dimensional space-
adapted basis, respectively. For the covariant derivative of some physical quantity
Y , we use the notation YI� or r�Y . We adopt the metric signature .�;C;C;C/.

4.2 The General Gravitational Action in Unitary Gauge and
the Background Equations of Motion

The EFT of cosmological perturbations allows one to deal with the low-energy
degree of freedom appearing for inflation and dark energy. In particular, we are
interested in the minimal extension of GR to modified gravitational theories with
a single scalar degree of freedom �. The EFT approach is based on the choice of
unitary gauge in which the constant time hypersurface coincides with the constant
� hypersurface. In other words, this corresponds to the gauge choice

ı� D 0 ; (4.1)

where ı� is the field perturbation. In this gauge the dynamics of ı� is “eaten” by the
metric, so the Lagrangian does not have explicit � dependence about the flat FLRW
background.

The EFT of cosmological perturbations is based on the 3C1 decomposition of the
ADM formalism [45]. In particular, the 3C1 splitting in unitary gauge allows one to
keep the number of time derivatives under control, while higher spatial derivatives
can be generally present. As we will see later, this property is especially useful for
constructing theories with second-order time and spatial derivatives. The ADM line
element is given by

ds2 D g��dx�dx� D �N2dt2 C hij.dxi CN idt/.dxj CNjdt/ ; (4.2)

whereN is the lapse function,N i is the shift vector, and hij is the three-dimensional
metric. Then, the four-dimensional metric g�� can be expressed as g00 D �N2 C
N iNi , g0i D gi0 D Ni , and gij D hij. A unit vector orthogonal to the constant
t hypersurface ˙t is given by n� D �NtI� D .�N; 0; 0; 0/, and hence n� D
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.1=N;�N i=N/ with n�n� D �1. The induced metric h�� on ˙t can be expressed
as h�� D g�� C n�n� , so that it satisfies the orthogonal relation n�h�� D 0.

The extrinsic curvature is defined by

K�� D h	�n�I	 D n�I� C n�a� ; (4.3)

where a� D n	n�I	 is the acceleration (curvature) of the normal congruence n� .
Since there is the relation n�K�� D 0, the extrinsic curvature is the quantity on ˙t .
The internal geometry of˙t can be quantified by the three-dimensional Ricci tensor
R�� � .3/R�� associated with the metric h�� . The three-dimensional Ricci scalar
R D R�

� is related to the four-dimensional Ricci scalar R, as

R D RCK��K
�� �K2 C 2.Kn� � a�/I� ; (4.4)

whereK � K�
� is the trace of the extrinsic curvature.

In the following we study general gravitational theories that depend on scalar
quantities appearing in the ADM formalism. In addition to the lapse N , we have the
following scalars

K � K�
� ; S � K��K

�� ; R � R�
� ; Z � R��R�� ; U � R��K

�� :

(4.5)

The LagrangianL of general gravitational theories depends on these scalars, so that
the action is given by

S D
Z
d4x
p�g L.N;K;S;R;Z;U I t/ : (4.6)

We do not include the dependence of the scalar quantity N D N�N� coming
from the shift vector, since such a term does not appear even in the most general
scalar-tensor theories with second-order equations of motion (see Sect. 4.5). In the
action (4.6), the time dependence is also explicitly included because in unitary
gauge its dependence is directly related to the scalar degree of freedom, such that
� D �.t/. The field kinetic term1

X � g��@��@�� (4.7)

depends on the lapse N and the time t . The field � enters the equations of motion
through the partial derivatives LN � @L=@N and LNN � @2L=@N 2.

1We caution that the notation of the field kinetic energy is the same as that used in [28,33], but the
notation of X used in [35–38, 44] is �1=2 times different.
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Let us consider four scalar metric perturbations A,  , �, and E about the flat
FLRW background with the scale factor a.t/. The general perturbed metric is given
by

ds2 D �e2Adt2 C 2 jidxidtC a2.t/.e2�ıij C @ijE/dxidxj ; (4.8)

where ji represents a covariant derivative with respect to hij, and @ij � rirj �
ıijr2=3. Under the transformation t ! t C ıt and xi ! xi C ıij@j ıx, the
perturbations ı� and E transform as

ı� ! ı� � P� ıt ; E ! E � ıx ; (4.9)

where a dot represents a derivative with respect to t . Choosing the unitary gauge
(4.1), the time slicing ıt is fixed. The spatial threading ıx can be fixed with the
gauge choice

E D 0 : (4.10)

On the flat FLRW background with the line element ds2 D �dt2Ca2.t/ıijdxidxj ,
the three-dimensional geometric quantities are given by

NK�� D H Nh�� ; NK D 3H ; NS D 3H2 ; NR�� D 0 ; NR D NZ D NU D 0 ;
(4.11)

where a bar represents background values and H � Pa=a is the Hubble parameter.
We define the following perturbed quantities

ıK�
� D K�

� �Hh�� ; ıK D K � 3H ; ıS D S � 3H2 D 2HıK C ıK�
� ıK

�
� ;

(4.12)

where the last equation arises from the first equation and the definition of S. Since R
and Z vanish on the background, they appear only as perturbations. Up to quadratic
order in perturbations, they can be expressed as

ıR D ı1RC ı2R ; ıZ D ıR�
� ıR�

� ; (4.13)

where ı1R and ı2R are first-order and second-order perturbations in ıR, respec-
tively. The perturbation Z is higher than first order. The first equality (4.12) implies

U D HRCR�
� ıK

�
� ; (4.14)

where the last term is a second-order quantity.
In order to derive the background and perturbation equations of motion, we

expand the action (4.6) up to quadratic order in perturbations, as
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L D NLC LN ıN C LKıK CLSıS C LRıRC LZıZ C LUıU

C1
2

�
ıN

@

@N
C ıK @

@K
C ıS @

@S C ıR
@

@R C ıZ
@

@Z C ıU
@

@U
�2
L;

(4.15)

where a lower index of the LagrangianL denotes the partial derivatives with respect
to the scalar quantities represented in the index. From the second and third relations
of Eq. (4.12), the expansion of the term LKıK C LSıS up to second order reads

LKıK C LSıS D F.K � 3H/CLSıK�
� ıK

�
�

' � PF � 3HF C PFıN C LSıK�
� ıK

�
� � PFıN 2 ; (4.16)

where

F � LK C 2HLS : (4.17)

In the second line of Eq. (4.16), the term FK has been integrated by using the
relationK D n�I�, as

Z
d4x
p�gFK D �

Z
d4x
p�g n�FI� D �

Z
d4x
p�g

PF
N
; (4.18)

where the boundary term is dropped. Note that we have also expanded the term
N�1 D .1C ıN /�1 up to second order in Eq. (4.16).

The term U satisfies the relation

˛.t/U D 1

2
˛.t/RK C 1

2N
P̨ .t/R ; (4.19)

where ˛.t/ is an arbitrary function of t . Using this relation and the fact that U is a
perturbed quantity, it follows that

LUıU D 1

2

� PLU C 3HLU
�
ı1RC 1

2

�
LUıK � PLU ıN

�
ı1R

C1
2

� PLU C 3HLU
�
ı2R ; (4.20)

where the first term on the r.h.s. is the first-order quantity, whereas the rest is
second-order.

Summing up the terms discussed above, the zeroth-order and first-order
Lagrangians of (4.15) are given, respectively, by

L0 D NL � PF � 3HF ; (4.21)

L1 D . PF CLN /ıN C Eı1R ; (4.22)
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where

E � LR C 1

2
PLU C 3

2
HLU : (4.23)

Defining the Lagrangian density as L D p�gL D N
p
hL, where h is the

determinant of the three-dimensional metric hij, the zeroth-order and first-order
terms read

L0 D a3
� NL � PF � 3HF� ; (4.24)

L1 D a3
� NLC LN � 3HF� ıN C � NL � PF � 3HF� ıphC a3Eı1R :

(4.25)

The last term is a total derivative, so it can be dropped. Varying the first-order
Lagrangian (4.25) with respect to ıN and ı

p
h, we can derive the following

equations of motion respectively:

NLC LN � 3HF D 0 ; (4.26)

NL� PF � 3HF D 0 : (4.27)

On using Eq. (4.27), the zero-th order Lagrangian density (4.24) vanishes. Subtract-
ing Eq. (4.26) from Eq. (4.27), we obtain

LN C PF D 0 : (4.28)

Two of Eqs. (4.26)–(4.28) determine the cosmological dynamics on the flat FLRW
background.

As an example, let us consider the non-canonical scalar-field model given by
[46, 47]

L D M2
pl

2
R C P.�;X/ ; (4.29)

where P is an arbitrary function with respect to � and X . Using Eq. (4.4) and
dropping the total divergence term, it follows that

L D M2
pl

2

�RC S �K2
�C P.�;X/ ; (4.30)

where X D �N�2 P�2. Since NL D �3M2
plH

2 C P , LN D 2 P�2PX , and F D
�2M2

plH on the flat FLRW background, Eqs. (4.26) and (4.28) read

3M2
plH

2 D �2PX P�2 � P ; (4.31)

M2
pl
PH D P�2PX ; (4.32)
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which match with those derived in [46]. Taking the time derivative of Eq. (4.31) and
using Eq. (4.32), we obtain the field equation of motion

d

dt

�
a3PX P�2

�C 1

2
a3 PP D 0 ; (4.33)

which is equivalent to d
dt

�
a3PX P�

�C 1
2
a3P� D 0. For a canonical field characterized

by the Lagrangian P D �X=2 � V.�/, this reduces to the well-known equation
R� C 3H P� C V� D 0.

4.3 Second-Order Action for Cosmological Perturbations

In order to derive the equations of motion for linear cosmological perturbations, we
need to expand the action (4.6) up to quadratic order. The Lagrangian (4.15) reads

L D NL � PF � 3HF C . PF C LN /ıN C Eı1R

C
�
1

2
LNN � PF

�
ıN 2 C 1

2
AıK2 C BıKıN C CıKı1RCDıNı1R

CEı2RC 1

2
Gı1R2 C LSıK�

� ıK
�
� CLZıR�

� ıR�
� ; (4.34)

where

A D LKK C 4HLSK C 4H2LSS ; (4.35)

B D LKN C 2HLSN ; (4.36)

C D LKR C 2HLSR C 1

2
LU CHLKU C 2H2LSU ; (4.37)

D D LNR � 1
2
PLU CHLNU ; (4.38)

G D LRR C 2HLRU CH2LUU : (4.39)

Then, we obtain the second-order Lagrangian density, as

L2 D ı
p
h
�
. PF C LN /ıN C Eı1R

	

Ca3

�
LN C 1

2
LNN

�
ıN 2 C Eı2RC 1

2
AıK2 C BıKıN C CıKı1R

C .DC E/ıNı1RC 1

2
Gı1R2 C LSıK�

� ıK
�
� C LZıR�

� ıR�
�

�
:

(4.40)
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For the gauge choice (4.10), the three-dimensional metric following from the
metric (4.8) is hij D a2.t/e2�ıij. Then, several perturbed quantities appearing in
Eq. (4.40) can be expressed as

ı
p
h D 3a3� ; ıRij D �

�
ıij@

2� C @i@j �
�
;

ı1R D �4a�2@2� ; ı2R D �2a�2 �.@�/2 � 4�@2�	 ; (4.41)

where @2� � @i@i � DP3
iD1 @2=@.xi /2 and .@�/2 D .@i �/.@i �/ DP3

iD1.@i �/2.
From Eq. (4.3) the extrinsic curvature can be expressed in the form

Kij D 1

2N

� Phij �Ni jj �Nj ji
�
: (4.42)

For the perturbed metric (4.8), the first-order extrinsic curvature reads

ıKi
j D

� P� �HıN� ıij � 1

2a2
ıik.@kNj C @jNk/ ; (4.43)

where we have used the fact that the Christoffel symbols � k
ij are the first-order

perturbations for non-zero values of k; i; j . Since the shiftNi is related to the metric
perturbation via Ni D @i , the trace of ıKij can be expressed as

ıK D 3
� P� �HıN� � 1

a2
@2 : (4.44)

On using the relations (4.41), (4.43), and (4.44), the second-order Lagrangian
density (4.40), up to boundary terms, reduces to

L2 D a3

1

2
.2LN C LNN C 9AH2 � 6BH C 6LSH2/ıN 2

C


.B � 3AH � 2LSH/

�
3 P� � @

2 

a2

�
C 4.3HC �D � E/@

2�

a2

�
ıN

� .3AC 2LS/ P� @
2 

a2
� 12C P� @

2�

a2
C
�
9

2
AC 3LS

�
P�2 C 2E .@�/

2

a2

C 1

2
.AC 2LS/

.@2 /2

a4
C 4C .@

2 /.@2�/

a4
C 2.4G C 3LZ/

.@2�/2

a4

�
;

(4.45)

where we have used the background equation (4.28) to eliminate the term 3a3.LNCPF/�ıN . Variations of the second-order action S2 D
R
d4x L2 with respect to ıN

and @2 lead to the following Hamiltonian and momentum constraints, respectively:
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�
2LN C LNN � 6HW � 3H2.3AC 2LS/

	
ıN

�W @2 

a2
C 3W P� C 4 .3HC �D � E/ @

2�

a2
D 0 ; (4.46)

WıN � .AC 2LS/
@2 

a2
C .3AC 2LS/ P� � 4C @

2�

a2
D 0 ; (4.47)

where

W � B � 3AH � 2LSH : (4.48)

From Eqs. (4.46) and (4.47) one can express ıN and @2 =a2 in terms of P� and
@2�=a2. The last three terms in Eq. (4.45) give rise to the equations of motion
containing spatial derivatives higher than second order. If we impose the three
conditions

AC 2LS D 0 ; (4.49)

C D 0 ; (4.50)

4G C 3LZ D 0 ; (4.51)

then such higher-order spatial derivatives are absent. Under the conditions (4.49)–
(4.51), we obtain the following relations from Eqs. (4.46) and (4.47):

@2 

a2
D 3W2 C 4LS.2LN C LNN � 6HW C 12H2LS/

W2
P�

�4.DC E/
W

@2�

a2
; (4.52)

ıN D 4LS
W
P� ; (4.53)

where W D LKN C 2HLSN C 4HLS . Substituting these relations into Eq. (4.45),
we find that the second-order Lagrangian density can be written in the form L2 D
c1.t/ P�2 C c2.t/ P�@2� C c3.t/.@�/2, where c1;2;3.t/ are time-dependent coefficients.
After integration by parts, the term c2.t/ P�@2� reduces to Pc2.t/.@�/2=2 up to a
boundary term. Then, the second-order Lagrangian density reads [28, 33]

L2 D a3Qs



P�2 � c

2
s

a2
.@�/2

�
; (4.54)

where

Qs � 2LS Œ3B2 C 4LS.2LN C LNN/�

W2
; (4.55)

c2s �
2

Qs

� PMCHM � E� ; (4.56)
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and

M � 4LS.D C E/
W D 4LS

W
�
LR C LNR C HLNU C 3

2
HLU

�
: (4.57)

Varying the action S2 D
R
d4x L2 with respect to the curvature perturbation �,

we obtain the equation of motion for �:

d

dt

�
a3Qs

P�
�
� aQsc

2
s @
2� D 0 : (4.58)

This is the second-order equation of motion with a single scalar degree of freedom.
Provided that the conditions (4.49)–(4.51) are satisfied, the gravitational theory
described by the action (4.6) does not involve derivatives higher than quadratic
order at the level of linear cosmological perturbations. As we will see in Sect. 4.5,
Horndeski theory satisfies the conditions (4.49)–(4.51).

While we have focused on scalar perturbations so far, we can also perform a
similar expansion for tensor perturbations. The three-dimensional metric including
tensor modes 
ij can expressed as

hij D a2.t/e2� Ohij ; Ohij D ıij C 
ij C 1

2

il
lj ; det Oh D 1 ; (4.59)

where 
ij is traceless and divergence-free such that 
ii D @i
ij D 0. We have
introduced the second-order term 
il
lj=2 for the simplification of calculations [48].
On using the property that tensor modes decouple from scalar modes, we substitute
Eq. (4.59) into the action (4.6) and then set scalar perturbations 0. We note that
tensor perturbations satisfy the relations ıK D 0, ıK2

ij D P
2ij=4, ı1R D 0, and
ı2R D �.@k
ij/

2=.4a2/. The second-order action for tensor perturbations reads

S
.h/
2 D

Z
d4x a3

h
LS

�
ıK�

�ıK
�
� � ıK2

�
C Eı2R

i

D
Z
d4x

a3

4



LS P
2ij �

E
a2
.@k
ij/

2

�
: (4.60)

One can express 
ij in terms of two polarization modes, as 
ij D hCeC
ij C

h�e�
ij . In Fourier space, the transverse and traceless tensors eC

ij and e�
ij satisfy the

normalization condition eij.k/ eij.�k/� D 2 for each polarization (k is a comoving
wavenumber), whereas eC

ij .k/ e
�
ij .�k/� D 0. The second-order Lagrangian (4.60)

can be written as the sum of two polarizations, as

S
.h/
2 D

X
	DC;�

Z
d4x a3Qt



Ph2	 �

c2t
a2
.@h	/

2

�
; (4.61)
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where

Qt � LS
2
; (4.62)

c2t �
E
LS

: (4.63)

Each mode h	 (	 D C;�) obeys the second-order equation of motion

d

dt

�
a3Qt

Ph	
�
� aQtc

2
t @
2h	 D 0 : (4.64)

In order to avoid the appearance of ghosts, the coefficient in front of the term Ph	
needs to be positive and hence Qt > 0. The small-scale instability associated with
the Laplacian term c2t @

2h	 is absent for c2t > 0. Then, the conditions for avoidance
of the ghost and the Laplacian instability associated with tensor perturbations are
given, respectively, by Gleyzes et al. [28] and Gergely and Tsujikawa [33]

LS > 0 ; (4.65)

E D LR C 1

2
PLU C 3

2
HLU > 0 : (4.66)

Similarly, the ghost and the Laplacian instability of scalar perturbations can be
avoided for Qs > 0 and c2s > 0, respectively, i.e.,

3 .LKN C 2HLSN /2 C 4LS.2LN C LNN/ > 0 ; (4.67)

PMCHM � E > 0 ; (4.68)

where we have used the condition (4.65). The four conditions (4.65)–(4.68) need to
be satisfied for theoretical consistency.

4.4 Inflationary Power Spectra

The scalar degree of freedom discussed in the previous section can give rise to
inflation in the early Universe. Moreover, the curvature perturbation � generated
during inflation can be responsible for the origin of observed CMB temperature
anisotropies [6]. The tensor perturbation not only contributes to the CMB power
spectrum but also leaves an imprint for the B-mode polarization of photons.

In this section we derive the inflationary power spectra of scalar and tensor
perturbations for the general action (4.6). We focus on the theory satisfying
the conditions (4.49)–(4.51). In this case, the equations of linear cosmological
perturbations do not involve time and spatial derivatives higher than second order.
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Since the Hubble parameterH is nearly constant during inflation, the terms that do
not contain the scale factor a slowly vary in time. Let us then assume that variations
of the termsQs , Qt , cs , and ct are small, such that the quantities

ıQs �
PQs

HQs

; ıQt �
PQt

HQt

; ıcs �
Pcs

Hcs
; ıct �

Pct
Hct

(4.69)

are much smaller than unity.
We first study the evolution of the curvature perturbation � during inflation. In

doing so, we express � in Fourier space, as

�.�;x/ D 1

.2�/3

Z
d3k O�.�;k/eik�x ; (4.70)

where

O�.�;k/ D u.�;k/a.k/C u�.�;�k/a�.�k/ : (4.71)

Here, � � R
a�1 dt is the conformal time, k is the comoving wavenumber, a.k/

and a�.k/ are the annihilation and creation operators, respectively, satisfying the
commutation relations

�
a.k1/; a

�.k2/
	 D .2�/3ı.3/.k1 � k2/ ;

Œa.k1/; a.k2/� D
�
a�.k1/; a

�.k2/
	 D 0 : (4.72)

On the de Sitter background where H is constant, we have a / eHt and hence
� D �1=.aH/. Here, we have set the integration constant 0, such that the asymptotic
past corresponds to � ! �1.

Using the equation of motion (4.58) for �, we find that each Fourier mode u obeys

RuC .a3Qs/
�

a3Qs

PuC c2s
k2

a2
u D 0 : (4.73)

For large k, the second term on the l.h.s. of Eq. (4.73) is negligible relative to the
third one, so that the field u oscillates according to the approximate equation Ru C
c2s .k

2=a2/u ' 0. After the onset of inflation, the c2s .k
2=a2/u term starts to decrease

quickly. Since the second term on the l.h.s. of Eq. (4.73) is of the order of H2u,
the third term becomes negligible relative to the other terms for csk < aH. In the
large-scale limit (k ! 0), the solution to Eq. (4.73) is given by

u D c1 C c2
Z

1

a3Qs

dt ; (4.74)
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where c1 and c2 are integration constants. As long as the variableQs changes slowly
in time, u approaches a constant value c1. The field u starts to be frozen once the
perturbations with the wavenumber k cross csk D aH [6, 49, 50].

We recall that the second-order Lagrangian for the curvature perturbation � is
given by Eq. (4.54). Introducing a rescaled field v D zu with z D a

p
2Qs,

the kinetic term in the second-order action S2 D
R
d4x L2 can be rewritten asR

d�d3x v02=2, where a prime represents a derivative with respect to � . This means
that v is a canonical field that should be quantized [34, 36]. Equation (4.73) can be
written as

v00 C
�
c2s k

2 � z00

z

�
v D 0 : (4.75)

On the de Sitter background with a slow variation of the quantity Qs, we can
approximate z00=z ' 2=�2. In the asymptotic past (k� ! �1), we choose the
Bunch-Davies vacuum characterized by the mode function v D e�icsk�=

p
2csk.

Then the solution to Eq. (4.75) is given by

u.�; k/ D i H e�icsk�

2.csk/3=2
p
Qs

.1C icsk�/ : (4.76)

The deviation from the exact de Sitter background gives rise to a small modification
to the solution (4.76), but this difference appears as a next-order slow-roll correction
to the power spectrum [51, 52].

In the regime csk � aH, the two-point correlation function of � is given by
the vacuum expectation value h0j O�.�;k1/ O�.�;k2/j0i at � � 0. We define the scalar
power spectrum P�.k1/, as

h0j O�.0;k1/ O�.0;k2/j0i D 2�2

k31
P�.k1/ .2�/3ı.3/.k1 C k2/ : (4.77)

Using the solution (4.76) in the � ! 0 limit, it follows that

P� D H2

8�2Qsc3s
: (4.78)

Since the curvature perturbation soon approaches a constant for csk < aH, it is
a good approximation to evaluate the power spectrum (4.78) at csk D aH during
inflation. From the Planck data, the scalar amplitude is constrained as P� ' 2:2 �
10�9 at the pivot wavenumber k0 D 0:002Mpc�1 [5].

The spectral index of P� is defined by

ns � 1 � d lnP�
d ln k

ˇ̌
ˇ̌
cskDaH

D �2� � ıQs � 3ıcs ; (4.79)
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where ıQs and ıcs are given by Eq. (4.69), and

� � �
PH
H2

: (4.80)

The slow-roll parameter � is much smaller than 1 on the quasi de Sitter background.
Given that the variations ofH and cs are small during inflation, we can approximate
the variation of ln k at csk D aH, as d ln k D d ln a D Hdt. Since we are
considering the situation with jıQs j � 1 and jıcs j � 1, the power spectrum is
close to scale-invariant (ns ' 1).

We also define the running of the spectral index, as

˛s � dns
d ln k

ˇ̌
ˇ̌
cskDaH

; (4.81)

which is of the order of �2 from Eq. (4.79). With the prior ˛s D 0, the scalar spectral
index is constrained as ns D 0:9603˙ 0:0073 at 68 % confidence level (CL) from
the Planck data [5]. Since � is at most of the order 10�2, it is a good approximation
to neglect the running ˛s in standard slow-roll inflation.

Let us also derive the spectrum of gravitational waves generated during inflation.
The second-order action for tensor perturbations is given by Eq. (4.61), where h	
obeys Eq. (4.64). A canonical field associated with h	 (	 D C;�) corresponds
to vt D zt h	 and zt D a

p
2Qt . Following a same procedure as that for scalar

perturbations, the solution to the Fourier-transformed mode h	, which recovers the
Bunch-Davies vacuum in the asymptotic past, reads

h	.�; k/ D i H e�ict k�

2.ctk/3=2
p
Qt

.1C ict k�/ : (4.82)

This solution approaches h	 ! iH=Œ2.ctk/
3=2
p
Qt� in the � ! 0 limit.

We also define the tensor power spectrum Ph in a similar way to (4.77).
According to the chosen normalization for the tensors e	ij explained in Sect. 4.3,
we obtain Ph D 4 
 k3jh	.0; k/j2=.2�2/, where h	.0; k/ D iH=Œ2.ctk/

3=2
p
Qt�. It

then follows that

Ph D H2

2�2Qtc
3
t

: (4.83)

The tensor spectral index, which is evaluated at ctk D aH, reads

nt � d lnPh
d ln k

ˇ̌
ˇ̌
ct kDaH

D �2� � ıQt � 3ıct ; (4.84)
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where ıQt and ıct are given by Eq. (4.69). The tensor power spectrum is close to
scale-invariant (nt ' 0) provided that � � 1, jıQt j � 1, and jıct j � 1. The
difference between the scalar and tensor spectral indices comes from the difference
between .Qs; cs/ and .Qt ; ct /.

For those times before the end of inflation (� � 1) when both P� and Ph are
approximately constant, the tensor-to-scalar ratio can be estimated as

r � Ph
P� D 4

Qsc
3
s

Qtc
3
t

: (4.85)

The Planck data [5], combined with the WMAP large-angle polarization measure-
ment [13] and ACT/SPT temperature data [53], showed that r is constrained as
r < 0:11 (95 % CL). Recently, the Background Imaging of Cosmic Extragalactic
Polarization (BICEP2) group [54] reported the first evidence for the primordial
B-mode polarization of CMB photons and they derived the bound r D 0:20C0:07

�0:05
(68 % CL) with r D 0 disfavored at 7� . There is a tension between the data of
Planck and BICEP2, but future measurements of the B-mode polarization will place
more precise bounds on r .

The inflationary scalar and tensor power spectra (4.78) and (4.83) are valid for
general theories given by the action (4.6), provided that the conditions (4.49)–
(4.51) are satisfied. The quantities like Qs and c2s are written in terms of the partial
derivatives of L with respect to the ADM variables such as K and N . For a given
theory, we need to express the Lagrangian L in terms of the three-dimensional
quantities and the lapseN to derive concrete forms of the inflationary power spectra.
In the next section, we will perform this procedure for the most general scalar-tensor
theories with second-order equations of motion.

4.5 Horndeski Theory

4.5.1 The Lagrangian of Horndeski Theory

In this section we apply the EFT formalism advocated in Sects. 4.2 and 4.3 to
the most general scalar-tensor theories with second-order equations of motion–
Horndeski theory [39]. This theory is described by the action S D R

d4x
p�g L,

with the Lagrangian [43]

L D
5X
iD2

Li ; (4.86)

where

L2 D G2.�;X/; (4.87)

L3 D G3.�;X/��; (4.88)
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L4 D G4.�;X/R � 2G4X.�;X/
�
.��/2 � �I���I��

	
; (4.89)

L5 D G5.�;X/G���I��

C1
3
G5X.�;X/

�
.��/3 � 3.��/ �I���I�� C 2�I���I���I� I�

	
: (4.90)

Here Gi (i D 2; 3; 4; 5) are functions in terms of a scalar field � and its kinetic
energy X D g��@��@�� with the partial derivatives GiX � @Gi=@X and Gi� �
@Gi=@�, R is the Ricci scalar, and G�� is the Einstein tensor. In 1973, Horndeski
derived the Lagrangian of the most general scalar-tensor theories in a different form
[39], but as shown in [35], it is equivalent to the above form. The Horndeski’s
paper2 has not been recognized much for a long time, but it was revived recently in
connection to covariant Galileons [40,41] and generalized Galileon theories [42,43].

The Lagrangian (4.86) covers a wide variety of gravitational theories listed
below.

• (1) General Relativity with a minimally coupled scalar field
The minimally coupled scalar-field theory (4.29) is characterized by the

functions [46]

G2 D P.�;X/ ; G3 D 0 ; G4 DM2
pl=2 ; G5 D 0 : (4.91)

The canonical scalar field with a potential V.�/ corresponds to the particular
choice

G2 D �X=2� V.�/ : (4.92)

• (2) Brans-Dicke theory
The Lagrangian of Brans-Dicke (BD) theory is given by

G2 D �Mpl!BDX

2�
� V.�/ ; G3 D 0 ; G4 D 1

2
Mpl� ; G5 D 0 ;

(4.93)

where!BD is the so-called BD parameter. In the original BD theory [55], the field
potential V.�/ is absent. Dilaton gravity [56] corresponds to !BD D �1.

2When Horndeski wrote this paper, he was the Ph.D. student of David Lovelock. In 1981, he
was taking a sabbatical year in Netherlands as a tenured professor of applied mathematics at the
University of Waterloo. When he saw a van Gogh exhibition, he was deeply moved. He stated
“I was never that interested in art. Then I stumbled onto van Gogh. I never knew art could be like
that. I had always thought of it as very representational and not very interesting. But then I thought,
‘This is something I eventually want to do.’ When I saw van Gogh I was sure I could paint.” After
this, Horndeski left physics and became an artist.
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• (3) f .R/ gravity
This theory is characterized by the action

S D
Z
d4x
p�g M

2
pl

2
f .R/ ; (4.94)

where f .R/ is an arbitrary function of the Ricci scalar R. The metric f .R/
gravity corresponds to the case in which the action (4.94) is varied with respect
to g�� . This can be accommodated by the Lagrangian (4.86) for the choice

G2 D �
M2

pl

2
.RF � f /; G3 D 0 ; G4 D 1

2
M2

plF ; G5 D 0 ;
(4.95)

where F � @f=@R. There is a scalar degree of freedom � D MplF.R/ with a
gravitational origin. Comparing Eq. (4.93) with Eq. (4.95), we find that metric
f .R/ gravity is equivalent to BD theory with !BD D 0 and the potential V D
.M2

pl=2/.RF � f /.
In the Palatini formalism where the metric g�� and the connection � ˛

ˇ
 are
treated as independent variables, the Ricci scalar is different from that in metric
f .R/ gravity. The Palatini f .R/ gravity is equivalent to BD theory with the
parameter !BD D �3=2 [15].

• (4) Non-minimally coupled theory
This theory is described by the functions

G2 D !.�/X � V.�/ ; G3 D 0 ; G4 D
M2

pl

2
� 1
2
��2 ; G5 D 0 :

(4.96)

where !.�/ and V.�/ are functions of �. Higgs inflation [57] corresponds to a
canonical field (!.�/ D �1=2) with the potential V.�/ D .	=4/.�2 � v2/2 (see
also [58]).

• (5) Covariant Galileons
The covariant Galileons [41], in the absence of the field potential, are

described by the functions

G2 D c2X ; G3 D c3X ; G4 D
M2

pl

2
C c4X2 ; G5 D c5X2 ;

(4.97)

where ci (i D 2; 3; 4; 5) are constants. The field equations of motion are invariant
under the Galilean transformation @�� ! @�� C b� in the limit of Minkowski
space-time [40].



116 S. Tsujikawa

• (6) Derivative couplings
A scalar field whose derivative couples to the Einstein tensor in the form

G��@
��@�� [59, 60] corresponds to the choice

G2 D �X=2� V.�/ ; G3 D 0 ; G4 D 0 ; G5 D c� ; (4.98)

where c is a constant and V.�/ is the field potential. In fact, integration of the
term c�G���

I�� by parts gives rise to the coupling �cG��@��@��.
• (7) Gauss-Bonnet couplings

The Gauss-Bonnet couplings of the from ��.�/R2GB, where R2GB D R2 �
4R˛ˇR

˛ˇ CR˛ˇ
ıR˛ˇ
ı , can be accommodated by the choice [35]

G2 D �2�.4/.�/X2Œ3 � ln.�X=2/� ; G3 D 2�.3/.�/XŒ7 � 3 ln.�X=2/� ;
G4 D 2�.2/.�/XŒ2 � ln.�X=2/� ; G5 D 4�.1/.�/ ln.�X=2/ ; (4.99)

where �.n/.�/ D @n�.�/=@�n.

4.5.2 Horndeski Lagrangian in Terms of ADM Variables

Let us express the Horndeski Lagrangians (4.87)–(4.90) in terms of the lapseN and
the three-dimensional quantities introduced in Sect. 4.2. In unitary gauge, the unit
vector n� orthogonal to the constant �-hypersurface is given by Gleyzes et al. [28]

n� D �
�I� ; 
 D 1p�X : (4.100)

Taking the covariant derivative of Eq. (4.100) and using the relation (4.4), we obtain

�I�� D � 1



�
K�� � n�a� � n�a�

�C 
2

2
�I�XI�n�n� : (4.101)

The trace of Eq. (4.101) gives

�� D � 1


K C �I�XI�

2X
: (4.102)

First of all, the Lagrangian L2 depends on N through the field kinetic energy,
i.e.,

L2 D G2.�;X.N // : (4.103)

On using the propertyX.N/ D � P�2=N 2 on the flat FLRW background, the quantity
like L2N can be evaluated as L2N D 2 P�2G2X .
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For the computation of L3 D G3��, it is convenient to introduce an auxiliary
function F3.�;X/, as

G3 D F3 C 2XF3X : (4.104)

After integration by parts, the term F3�� reduces to �.F3��I� C F3XXI�/�I� up
to a boundary term. On using the relation (4.102) for the term 2XF3X��, it follows
that

L3 D 2.�X/3=2F3XK � XF3� : (4.105)

Although the auxiliary function F3 is present in the expression of L3, the combina-
tion of quantities appearing in the background and linear perturbation equations of
motion can be expressed in terms of G3.

Substituting Eqs. (4.101) and (4.102) into Eq. (4.89), the term L4 reads

L4 D G4RC 2XG4X .K
2 � S/C 2G4XXI�.Kn� � a�/ ; (4.106)

where we have used the property a� D �h��XI�=.2X/. Substituting Eq. (4.4) into
Eq. (4.106) and employing the relationsG4XXI� D G4I�C 
�1G4�n� and n�a� D
0, we obtain

L4 D G4RC .2XG4X �G4/.K2 � S/ � 2p�XG4�K : (4.107)

The LagrangianL5 is most complicated to be dealt with. We refer readers to [28]
for detailed calculations. Introducing an auxiliary function F5.�;X/ such that

G5X � F5

2X
C F5X ; (4.108)

the final expression of L5 is given by

L5 D
p�XF5

�
1

2
KR� U

�
�H.�X/3=2G5X.2H2 � 2KH CK2 � S/

C1
2
X.G5� � F5�/RC 1

2
XG5�.K

2 � S/ ; (4.109)

which is valid up to quadratic order in the perturbations.
Summing up the contributions (4.103), (4.105), (4.107), and (4.109), the

Lagrangian (4.86) can be expressed as

L D G2 C 2.�X/3=2F3XK � XF3�

CG4RC .2XG4X �G4/.K2 � S/� 2p�XG4�K
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Cp�XF5
�
1

2
KR� U

�
�H.�X/3=2G5X.2H2 � 2KH CK2 � S/

C1
2
X.G5� � F5�/RC 1

2
XG5�.K

2 � S/ ; (4.110)

where G2;3;4;5 and F3;5 are functions of � and X.N/. The Lagrangian (4.110)
depends on N , K , S, R, U , but not on Z . We evaluate the partial derivatives of
the Lagrangian (4.110) with respect to N , K etc. and finally set N D 1, K D 3H ,
S D 3H2, R D 0, U D 0.

Among the terms appearing in Eqs. (4.49)–(4.51), the non-vanishing ones are
given by

LKK D �2LS D 2.2XG4X �G4/� 2H.�X/3=2G5X C XG5� ; (4.111)

LKR D �1
2
LU D 1

2

p�XF5 ; (4.112)

so that all the three conditions (4.49)–(4.51) are satisfied. In Horndeski theory, there
are no spatial derivatives higher than second order.

4.5.3 Conditions for the Avoidance of Ghosts and Laplacian
Instabilities

The conditions (4.65) and (4.66) for avoiding the ghost and the Laplacian instability
of tensor perturbations translate to

LS D G4 � 2XG4X �H P�XG5X � 1
2

XG5� > 0 ; (4.113)

E D G4 C 1

2
XG5� � XG5X

R� > 0 ; (4.114)

respectively. In the presence of the terms G4.X/ and G5.�;X/, the tensor propaga-
tion speed square c2t D E=LS is generally different from 1.

On using the properties B D LKN C 2HLSN and W D LKN C 2HLSN C 4HLS ,
the quantityQs in Eq. (4.55) can be expressed as

Qs D 2LS
3W2

�
9W2 C 8LSw

�
; (4.115)
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where3

w � 3LN C 3LNN=2� 9H.LKN C 2HLSN /� 18LSH2

D �18H2G4 C 3.XG2X C 2X2G2XX/� 18H P�.2XG3X CX2G3XX/

�3X.G3� C XG3�X/C 18H2.7XG4X C 16X2G4XX C 4X3G4XXX/

�18H P�.G4� C 5XG4�X C 2X2G4�XX/C 6H3 P�.15XG5X C 13X2G5XX

C2X3G5XXX/C 9H2X.6G5� C 9XG5�X C 2X2G5�XX/ ; (4.116)

W D 4HG4 C 2 P�XG3X � 16H.XG4X CX2G4XX/C 2 P�.G4� C 2XG4�X/

�2H2 P�.5XG5X C 2X2G5XX/ � 2HX.3G5� C 2XG5�X/ : (4.117)

Taking into account the requirement (4.113), the no-ghost condition for scalar
perturbations reads

9W2 C 8LSw > 0 : (4.118)

In Horndeski theory (4.110), we notice that there is the following relation

LS D D C E D LR C LNR C 3

2
HLU C HLNU ; (4.119)

so that the quantity (4.57) reduces to

M D 4L2S
W : (4.120)

Then, the condition (4.68) for avoiding the Laplacian instability of scalar perturba-
tions reads

d

dt

�
4L2S
W

�
C 4HL2S

W � E > 0 ; (4.121)

where LS , E , and W are given by Eqs. (4.113), (4.114), and (4.117) respectively.
As an example, let us consider BD theory described by the functions (4.93).

Since LS D E D G4 DMpl�=2 in this case, the conditions (4.113) and (4.114) are
satisfied for

� > 0 ; (4.122)

3The four quantities w1;2;3;4 introduced in [38] are related to LS , W , w, and E , as w1 D 2LS ,
w2 D W , w3 D w, and w4 D 2E .
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with the tensor propagation speed square c2t D 1. Since W D Mpl. P� C 2H�/ and
w D �3Mpl.6H

2�2 � !BD P�2 C 6H� P�/=.2�/, the quantity (4.115) reads

Qs D .3C 2!BD/Mpl� P�2
. P� C 2H�/2 : (4.123)

On using the condition (4.122), we find that the scalar ghost is absent for

!BD > �3=2 : (4.124)

The quantity M can be expressed as

M D �M
2
pl�

2

F ; (4.125)

where we have used the fact that the termF in Eq. (4.17) is given by F D �Mpl. P�C
2H�/. From the background equation (4.28), it follows that

PF D �LN D �Mpl P�.3H� � !BD P�/=� : (4.126)

Then, the condition (4.68) for avoiding the Laplacian instability of scalar perturba-
tions translates to

PMCHM � E D .3C 2!BD/Mpl� P�2
2. P� C 2H�/2 > 0 ; (4.127)

which is satisfied under (4.122) and (4.124). In fact, from Eq. (4.56), the scalar
propagation speed square c2s is equivalent to 1 in BD theory.

4.5.4 Primordial Power Spectra in k-Inflation

Let us consider a non-canonical scalar-field theory described by the Lagrangian
(4.29). This theory can be expressed in terms of the ADM variables as Eq. (4.30).
Since LS D E D G4 D M2

pl=2, Qt D M2
pl=4 and c2t D 1, the tensor mode is not

plagued by any ghosts and Laplacian instabilities. From Eq. (4.83), the tensor power
spectrum is given by

Ph D 2H2

�2M2
pl

; (4.128)

which depends only on H . Therefore, if the amplitude of primordial gravitational
waves is measured, the energy scale of inflation can be explicitly known.
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We also have the relations W D 2HM2
pl, w D �9H2M2

pl C 3X.PX C 2XPXX/,
and

Qs D �
P�2.PX C 2XPXX/

H2
; (4.129)

so the scalar ghost is absent for PX C 2XPXX < 0. Since F D �2M2
pl
PH and

LN D 2 P�2PX , the background equation of motion (4.28) gives M2
pl
PH D P�2PX .

Taking the time derivative of the quantity M DM2
pl=.2H/, it follows that

PMCHM � E D �M
2
pl
PH

2H2
D �

P�2PX
2H2

: (4.130)

To avoid the instability of scalar perturbations, we require that PX < 0. Substituting
Eqs. (4.129) and (4.130) into Eq. (4.56), we obtain

c2s D
PX

PX C 2XPXX
: (4.131)

In standard slow-roll inflation driven by the potential energy V.�/ of a canonical
scalar field (P D �X=2�V.�/), c2s is equivalent to 1. If the LagrangianP contains
a non-linear term in X , the scalar propagation speed is generally different from 1.

From Eqs. (4.129) and (4.131), we find that the slow-roll parameter � D � PH=H2

is related to Qs and c2s , as

� D Qsc
2
s

M2
pl

: (4.132)

Then, the scalar power spectrum (4.78) reads

P� D H2

8�2M2
pl�cs

: (4.133)

From Eqs. (4.128) and (4.133), the tensor-to-scalar ratio is given by Garriga and
Mukhanov [49]

r D 16cs� : (4.134)

Since � � 1 during inflation, it follows that r � 1 for cs 	 1.

4.6 Horndeski Theory in the Language of EFT

In this section, we relate the variables introduced in Sect. 4.2 with those employed
in the EFT language of [17, 25, 26]. The action expanded up to quadratic order in
the perturbations can be written in the following form
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S D
Z
d4x
p�g



M2�
2

fR ��� c g00 C M4
2

2
.ıg00/2 � Nm

3
1

2
ıKıg00 �

NM2
2

2
ıK2

�
NM2
3

2
ıK�

� ıK
�
� C

�21
2
Rıg00 C Nm5

2
RıK C 	1

2
R2 C 	2

2
R�
�R�

�

�
; (4.135)

where g00 D �1=N 2, M� is a constant, and other coefficients such as f;�; c;M4
2

depend on time. We note that the four-dimensional Ricci scalar R can be written in
terms of the three-dimensional quantities as Eq. (4.4). After integration by parts, the
first term in Eq. (4.135) reads

M2�
2

fR D M2�
2

�
fRC f S � fK2 � 2 Pf K

N

�
: (4.136)

Now we substitute R D ı1RCı2R,K D 3H2CıK , and S D 3H2C2HıKC
ıK

�
� ıK

�
� into Eq. (4.136) and then expand the action (4.135) up to quadratic order

in the perturbations. In doing so, we use the similar property to Eq. (4.18), i.e.,R
d4x
p�g ˇ.t/ıK D R

d4x
p�g.� P̌ � 3Hˇ C P̌ıN � P̌ıN 2/, where ˇ.t/ is an

arbitrary function in terms of t . Then, the resulting Lagrangian reads

L D M2�. Rf C 2H Pf C 2 PHf C 3H2f / ��C c

CŒM 2�.� Rf CH Pf � 2 PHf / � 2c�ıN C
M2�
2
f ı1R

C
h
M2�. Rf �H Pf C 2 PHf /C 3c C 2M4

2

i
ıN 2 �

 
M2�
2
f C

NM2
2

2

!
ıK2

C.M2� Pf � Nm3
1/ıKıN C

Nm5

2
ıKı1RC �21ıNı1RC

M2�
2
f ı2R

C
 
M2�
2
f �

NM2
3

2

!
ıK�

� ıK
�
� C

	1

2
R2 C 	2

2
ıR�

� ıR�
� : (4.137)

Comparing the terms up to the second line of Eq. (4.137) with those in Eq. (4.22),
it follows that

M2�. Rf C 2H Pf C 2 PHf C 3H2f / ��C c D NL � PF � 3HF ; (4.138)

M2�.� Rf CH Pf � 2 PHf / � 2c D PF C LN ; (4.139)

f D 2

M2�
E D 1

M2�

�
2LR C PLU C 3HLU

�
: (4.140)

From Eqs. (4.27) and (4.28), the r.h.s. of Eq. (4.138) and (4.139) vanish in the
absence of matter. The background equations of motion are characterized by the
three parameters f , �, and c. Comparing the second-order terms in Eq. (4.137)
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with those in Eq. (4.34), we obtain the following relations

M4
2 D

1

4
.2LN C LNN � 2c/ ; Nm3

1 D 2 PE � LKN � 2HLSN ;

NM2
2 D �2E � LKK � 4HLSK � 4H2LSS ; NM2

3 D 2E � 2LS ;

�21 D LNR � 1
2
PLU C HLNU ;

Nm5 D 2LKR C 4HLSR C LU C 2HLKU C 4H2LSU ;

	1 D LRR C 2HLRU CH2LUU ; 	2 D 2LZ ; (4.141)

where we have used Eq. (4.139) to derive M4
2 . In Horndeski theory, the r.h.s. of

Eq. (4.141) can be evaluated by taking partial derivatives of the Lagrangian (4.110)
in terms of the scalar variables.

The conditions (4.49)–(4.51) reduce, respectively, to

NM2
2 C NM2

3 D 0 ; Nm5 D 0 ; 8	1 C 3	2 D 0 ; (4.142)

under which the spatial derivatives higher than second order are absent. On using
these conditions, the Lagrangian (4.135) can be expressed as

S D
Z
d4x
p�g



M2�
2

fR ��� c g00 C M4
2

2
.ıg00/2 � Nm

3
1

2
ıKıg00

�m2
4

�
ıK2 � ıK�

� ıK
�
�

�
C �21

2
Rıg00

�
; (4.143)

where

m2
4 �

1

4

� NM2
2 � NM2

3

� D 1

4

��4E C 2LS � LKK � 4HLSK � 4H2LSS
�
:

(4.144)

The terms containing R2 D 16.@2�/2=a4 and RijRij D Œ5.@2�/2C .@i @j �/2�=a4 are
absent in Eq. (4.143) because they only involve spatial derivatives of � higher than
second order.

In Horndeski theory described by the action (4.110), the coefficients in the action
(4.143) can be computed by using Eqs. (4.138)–(4.141). They are given by

M2�f D 2G4 �G5� P�2 C 2G5X P�2 R� ; (4.145)

� D XG2X �G2 C P�2. R� C 3H P�/G3X C PF4=2C 3H PXG4X � 18H2G4X P�2
C6HG4�X

P�3 C 12H2G4XX P�4 C PF5=2C 3M2�H2f5 C 3M2�H Pf5=2
�6H2G5� P�2 � 7H3G5X P�3 C 3H2G5�X P�4 C 2H3G5XX P�5 ; (4.146)

c D XG2X C P�2.� R� C 3H P�/G3X C P�2G3� � PF4=2C 3H PXG4X
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�6H2G4X P�2 C 6HG4�X
P�3 C 12H2G4XX P�4 � PF5=2C 3M2�H Pf5=2

�3H2G5� P�2 � 3H3G5X P�3 C 3H2G5�X P�4 C 2H3G5XX P�5 ; (4.147)

M4
2 D X2G2XX C . R� C 3H P�/G3X P�2=2� 3HG3XX P�5 �G3�X P�4=2
C PF4=4 � 3H PXG4X=2C 6HG4�X

P�3 C 18H2G4XX P�4 � 6HG4�XX P�5

�12H2G4XXX P�6 C PF5=4 � 3M2�H Pf5=4� 3H3G5X P�3=2
C6H2G5�X P�4 C 6H3G5XX P�5 � 3H2G5�XX P�6 � 2H3G5XXX P�7; (4.148)

Nm3
1 D 2G3X P�3 C 2 PXG4X � 8HG4X

P�2 C 4G4�X P�3 C 16HG4XX P�4 ;
CM2� Pf5 � 4HG5�

P�2 � 6H2G5X P�3 C 4HG5�X
P�4 C 4H2G5XX P�5;

(4.149)

m2
4 D �21 D 2G4X P�2 CG5� P�2 C HG5X

P�3 �G5X P�2 R� ; (4.150)

where

F4 D 2 PXG4X � 8HG4X
P�2 ; (4.151)

F5 D 2M2�Hf5 CM2� Pf5 � 2HG5�
P�2 � 2H2G5X P�3 ; (4.152)

M2�f5 D �G5� P�2 C 2G5X P�2 R� : (4.153)

We stress that Horndeski theory satisfies the additional relation m2
4 D �21.

The time and spatial derivatives for the theory (4.143) are kept up to second
order for linear cosmological perturbations. If m2

4 ¤ �21, then higher-order spatial
derivatives should appear beyond linear order. For the computation of primordial
non-Gaussianities of curvature perturbations generated during inflation, we need to
expand the action (4.6) higher than quadratic order. In such cases, the presence of
higher-order spatial derivatives can modify the shape of non-Gaussianities [20, 61]
relative to that derived for Horndeski theory [37, 38, 52].

4.7 Application to Dark Energy

In this section, we study the dynamics of dark energy based on Horndeski theory in
the presence of matter (cold dark matter, baryons, photons etc.). The action in such
a theory is given by

S D
Z
d4x
p�g

5X
iD2

Li C
Z
d4x Lm ; (4.154)

where L2;3;4;5 are given by Eqs. (4.87)–(4.90) and Lm is the matter Lagrangian of a
barotropic perfect fluid. The scalar degree of freedom is responsible for the late-time
cosmic acceleration. We assume that matter does not have a direct coupling to �.
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4.7.1 Background Equations of Motion

On the flat FLRW background, the energy-momentum tensor of the barotropic
perfect fluid is given by T 00 D �m and T ij D Pmıij , where m is the energy density
and Pm is the pressure. This satisfies the continuity equation T �0I� D 0, i.e.,

Pm C 3H.m C Pm/ D 0 : (4.155)

In the presence of matter, the background equations of motion (4.26) and (4.28) are
modified to

NLC LN � 3HF D m ; (4.156)

PF C LN D m C Pm : (4.157)

Substituting Eqs. (4.156)–(4.157) into Eqs. (4.138)–(4.139), we obtain

�C c D 3M2�.fH2 C Pf H/ � m ; (4.158)

�� c D M2�.2f PH C 3fH2 C 2 Pf H C Rf /C Pm : (4.159)

In Horndeski theory, the functions f , �, c are given, respectively, by Eqs. (4.145),
(4.146), and (4.147). Among the four functions G2;3;4;5, the three combinations of
them (i.e., f;�; c) determine the cosmological dynamics.

Taking the time derivative of Eq. (4.158) and using Eqs. (4.155) and (4.159), we
obtain

P�C Pc C 6Hc D 3M2� Pf .2H2 C PH/ : (4.160)

The background equations of motion (4.158) and (4.159) can be expressed as

3M2
plH

2 D DE C m ; (4.161)

M2
pl.2
PH C 3H2/ D �PDE � Pm ; (4.162)

where

DE D c C�C 3H2.M2
pl �M2�f /� 3M2� Pf H ; (4.163)

PDE D c �� � .2 PH C 3H2/.M2
pl �M2�f /CM2�.2H Pf C Rf / : (4.164)

On using Eq. (4.160), we find that the “dark” component satisfies the standard
continuity equation

PDE C 3H.DE C PDE/ D 0 : (4.165)
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Then, we can define the equation of state of dark energy, as

wDE D PDE

DE
D �1C 2c � 2 PH.M2

pl �M2�f /�M2�.H Pf � Rf /
c C�C 3H2.M2

pl �M2�f /� 3M2� Pf H
: (4.166)

For quintessence described by the Lagrangian G2 D P.�;X/, G3 D 0, G4 D
M2

pl=2, and G5 D 0, we have M2�f D M2
pl, � D V.�/, and c D P�2=2. Since

wDE D Œ P�2=2 � V.�/�=Œ P�2=2C V.�/� in this case, it follows that wDE > �1. For
a non-canonical scalar field with the Lagrangian (4.29) we have wDE < �1 for
PX > 0, but the scalar ghost is present. For the theories in which the quantity f
varies in time (i.e., G4 or G5 varies), it is possible to realize wDE < �1 under the
condition

2c � 2 PH.M2
pl �M2�f / �M2�.H Pf � Rf / < 0 ; (4.167)

where we have assumed DE > 0. In f .R/ gravity [62–66] and Galileons [67], the
dark energy equation of state can be smaller than�1, while avoiding the appearance
of ghosts.

4.7.2 Matter Density Perturbations and Effective Gravitational
Couplings

Let us proceed to discuss the equations of motion for linear cosmological perturba-
tions. The discussion in Sect. 4.2 is based on unitary gauge, but for the study of dark
energy, the Newtonian gauge is commonly used. The general metric in the presence
of scalar perturbations � ,  , ˚ , and E can be written as

ds2 D �.1C2�/dt2C2 jidxidtCa2.t/ �.1C 2˚/ıij C @ijE
	

dxidxj : (4.168)

The Newtonian gauge corresponds to  D 0 and E D 0.
Since the Horndeski action is equivalent to the EFT action (4.143) in unitary

gauge with m4 D �21 (up to second order), it is possible to derive the perturbation
equations in general gauge by reintroducing the scalar perturbation ı� via the
Stueckelberg trick [16, 17, 28]. The quantities appearing in the action (4.143)
transform under the time coordinate change t ! t C ı�.t;x/, e.g., ıKij !
ıKij� PHı�hij�@i@j ı�, .3/Rij ! .3/RijCH.@i@j ı�Cıij@

2ı�/. This transformation
allows one to write the action (4.6) up to quadratic order in the perturbations for the
general metric (4.168). Varying the resulting action S with respect to � ,  , ˚ , E ,
ı� and finally setting  D 0 D E , we can derive the perturbation equations in the
Newtonian gauge. This is the approach taken in [28].
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As performed in [44], the perturbation equations can be also derived by directly
expanding the Horndeski action (4.154) for the metric (4.168). In the following we
assume that the matter Lagrangian Lm is described by a barotropic perfect fluid of
non-relativistic matter with the energy-momentum tensor

T 00 D �.m C ım/ ; T 0i D �m@ivm ; T ij D 0 : (4.169)

Since there is no direct coupling between matter and the field �, the perturbed
energy-momentum tensor obeys the continuity equation

ıT �� I� D 0 : (4.170)

From the � D 0 and � D i components of Eq. (4.170), we obtain the following
equations in Fourier space respectively,

Pım C 3Hım C 3m P̊ C k2

a2
mvm D 0 ; (4.171)

Pvm D � ; (4.172)

where k is a comoving wavenumber. We introduce the gauge-invariant density
contrast

ım � ım

m
C 3Hvm : (4.173)

Taking the time derivative of (4.171) and using Eq. (4.172), the density contrast
satisfies

Rım C 2H Pım C k2

a2
� D 3 RQC 6H PQ ; (4.174)

whereQ � Hvm � ˚ .
Expanding the action (4.154) for the metric (4.168) up to quadratic order in the

perturbations, varying the resulting action with respect to E , � , ı�, and finally
setting  D E D 0, we obtain the following perturbation equations respectively:

B6˚ C B7ı� C B8� D 0 ; (4.175)

A1 P̊ C A2 Pı� � m� C B8 k
2

a2
˚ C A4� C

�
A6
k2

a2
� �

�
ı� � ım D 0 ; (4.176)

D1
R̊ CD2

Rı� CD3
P̊ CD4

Pı� CD5
P� C

�
B7
k2

a2
CD8

�
˚

C
�
D9

k2

a2
�M2

�
ı� C

�
A6
k2

a2
CD11

�
� D 0 ; (4.177)
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where

B6 D 4E D 4G4 C 2XG5� � 4XG5X
R� ; (4.178)

B7 D 4

P�
� PLS CH.LS � E/	 ;

D 8G4XH P� C 8.G4X C 2XG4XX/ R� C 4G4� � 8XG4�X

C4.G5� C XG5�X/ R� C 4H
�
2.G5X C XG5XX/ R� CG5� � XG5�X

	 P�
�2XG5�� � 4.H2 C PH/XG5X ; (4.179)

B8 D 4LS D 4G4 � 8XG4X � 4H P�XG5X � 2XG5� : (4.180)

Explicit forms of the time-dependent coefficients Ai and Di as well as other
perturbations equations (derived by the variations of˚ and ) are given in [44]. The
definition of the term � in Eq. (4.176) is � D H� , where H � �. NLCLN �3HF/.
The term M in Eq. (4.177) is defined by

M2 � Œ P�C 3H.�C �/� = P� ; (4.181)

where � D P� with P � NL� PF � 3HF . The mass squareM2 involves the second
derivative of �G2 with respect to � [44]. For a canonical field with the potential
V.�/, this means that the second derivative V�� is present in the expression of M2.
For dark energy models in which the so-called chameleon mechanism [68] works
to suppress the fifth force mediated by the field �, the models are designed to have
a large mass M in the region of high density [62–66, 69]. In the low-energy regime
where the late-time cosmic acceleration comes into play, the mass M should be as
small as H0.

The perturbations related to the observations of large-scale structures and weak
lensing have been deep inside the Hubble radius in the low-redshift regime. In
the following we use the quasi-static approximation on sub-horizon scales, under
which the dominant contributions to Eqs. (4.176) and (4.177) are those involving
the terms k2=a2, ım, and M2 [70]. In doing so, we neglect the contribution of
the oscillating term of the field perturbation ı� relative to the one induced from
the matter perturbation ım. Under this approximation scheme, the variations of the
gravitational potentials ˚ and � are small such that j P̊ j < jH˚ j and j P� j < jH� j.
Then, Eqs. (4.176) and (4.177) read

B8
k2

a2
˚ C A6 k

2

a2
ı� � ım ' 0 ; (4.182)

B7
k2

a2
˚ C

�
D9

k2

a2
�M2

�
ı� C A6 k

2

a2
� ' 0 ; (4.183)
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where

A6 D 2XG3X C 8H.G4X C 2XG4XX/ P� C 2G4� C 4XG4�X

C4H �
G5� C XG5�X

� P� � 2H2X .3G5X C 2XG5XX/ ; (4.184)

D9 D 2G2X � 4 .G3X C XG3XX/ R� � 8HG3X
P� � 2G3� C 2XG3�X

CŒ�16H.3G4XX C 2XG4XXX/ R� � 8H.3G4�X � 2XG4�XX/� P�
�4.3G4�X C 2XG4�XX/ R� C 40H2XG4XX C 4XG4��X

C8 PH.G4X C 2XG4XX/C 12H2G4X C f�8H.2G5�X C XG5�XX/ R�
C8H.H2 C PH/.G5X C XG5XX/C 4HXG5��Xg P� � 4H2X2G5�XX

C4H2.G5X C 5XG5XX C 2X2G5XXX/ R� C 2.3H2 C 2 PH/G5�
C4 PHXG5�X C 10H2XG5�X : (4.185)

Solving Eqs. (4.175), (4.182), and (4.183) for � and ˚ , it follows that

k2

a2
� ' � .B6D9 � B2

7 / .k=a/
2 � B6M2

.A26B6 C B2
8D9 � 2A6B7B8/ .k=a/2 � B2

8M
2
ım ; (4.186)

k2

a2
˚ ' � .A6B7 � B8D9/ .k=a/

2 C B8M2

.A26B6 C B2
8D9 � 2A6B7B8/ .k=a/2 � B2

8M
2
ım : (4.187)

From Eq. (4.171), we find that the term Hvm is at most of the order of
.aH=k/2ım=m. For the modes deep inside the Hubble radius (k � aH), we then
have ım ' ım=m in Eq. (4.173). Under the quasi-static approximation on sub-
horizon scales, the r.h.s. of Eq. (4.174) is negligible relative to the l.h.s. of it. On
using Eq. (4.186), the linear matter perturbation obeys

Rım C 2H Pım � 4�Geffmım ' 0 ; (4.188)

where

Geff D
2M2

plŒ.B6D9 � B2
7 / .k=a/

2 � B6M2�

.A26B6 C B2
8D9 � 2A6B7B8/ .k=a/2 � B2

8M
2
G : (4.189)

Note that G is the bare gravitational constant related with the reduced Planck mass
Mpl via the relation 8�G D M�2

pl . Since the effective gravitational coupling Geff is
different depending on gravitational theories, it is possible to discriminate between
different modified gravity models from the growth of matter perturbations.

In order to quantify the difference between the two gravitational potentials� and
˚ , we define

� � �˚=� : (4.190)
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On using the solutions (4.186) and (4.187), the anisotropy parameter reads

� ' .B8D9 �A6B7/.k=a/2 � B8M2

.B6D9 � B2
7 /.k=a/

2 � B6M2
: (4.191)

The effective gravitational potential associated with deviation of the light rays in
CMB and weak lensing observations is defined by [71]

˚eff � .� � ˚/=2 ; (4.192)

From Eqs. (4.186), (4.189), and (4.190), we obtain

˚eff ' �4�Geff
1C �
2

�a
k

�2
mım ; (4.193)

which is related to both ım and �.

4.7.3 Growth of Matter Perturbations

Introducing the matter density parameter ˝m D m=.3M
2
plH

2/, we can write the
matter perturbation equation (4.188) in the form

ı00
m C

�
2C H 0

H

�
ı0
m �

3

2

Geff

G
˝mım ' 0 ; (4.194)

where a prime represents a derivative with respect to ln a.
Let us first consider a non-canonical scalar field described by the Lagrangian

L D M2
pl

2
R C P.�;X/ ; (4.195)

in which case G2 D P.�;X/, G3 D 0, G4 D M2
pl=2, and G5 D 0. Since B6 D

B8 D 2M2
pl, B7 D A6 D 0, and D9 D 2PX , it follows that Geff D G and � D 1

from Eqs. (4.189) and (4.191). During the matter-dominated epoch characterized by
˝m D 1 and H 0=H D �3=2, there is the growing-mode solution to Eq. (4.194):

ım / t2=3 : (4.196)

In this regime, the effective gravitational potential (4.193) is constant. After the
Universe enters the epoch of cosmic acceleration, the growth rate of ım becomes
smaller than that given in Eq. (4.196), so˚eff starts to decay. SinceGeff is equivalent
to G for the models in the framework of GR, the difference of the growth rate
between the models comes from the different background expansion history. In the
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�CDM model characterized by P D ��, the growth rate f � Pım=.Hım/ can be
estimated as f D .˝m/


 with 
 ' 0:55 in the low-redshift regime (z < 1) [72]. As
long as the dark energy equation of state does not significantly deviate from �1, 

is close to the value 0:55 for the models in the framework of GR [73, 74].

As an example of modified gravity models, we consider BD theory described by
the action (4.93). Since B6 D 2Mpl�, B7 D 2Mpl, B8 D 2Mpl�, A6 D Mpl, and
D9 D �Mpl!BD=�, Eqs. (4.189) and (4.191) reduce to

Geff D Mpl

�

4C 2!BD C 2.�=Mpl/.Ma=k/2

3C 2!BD C 2.�=Mpl/.Ma=k/2
G ; (4.197)

� D 1C !BD C .�=Mpl/.Ma=k/2

2C !BD C .�=Mpl/.Ma=k/2
; (4.198)

where

M2 D V�� C !BDMpl

�3

� P�2 � � � R� C 3H P��	 : (4.199)

In the !BD ! 1 limit with � ! Mpl, we obtain Geff ! G and � ! 1, so the
General Relativistic behavior can be recovered. The same property also holds for
M !1, as the scalar field does not propagate.

In the massless limitM2! 0, it follows thatGeff ' .Mpl=�/.4C2!BD/G=.3C
2!BD/ and � ' .1 C !BD/=.2 C !BD/, so the growth rates of ım and ˚eff are
different from those in GR. Since !BD D 0 in metric f .R/ gravity, we have
Geff ' .Mpl=�/.4=3/G and � ' 1=2. The viable dark energy models based on
f .R/ gravity [62–66] are constructed in a way that the massM is large forR� H2

0

and that M decreases to the similar order to H0 by today. There is a transition from
the “massive” regime M > k=a to the “massless” regime M < k=a, depending
on the wavenumber k [64, 65, 75]. If this transition happens in the deep matter era
characterized by H 0=H ' �3=2 and Q̋m D m=.3Mpl�H

2/ ' 1, the growing-
mode solution to Eq. (4.194) during the “massless” regime of metric f .R/ gravity
is given by

ım / t .
p
33�1/=6 ; (4.200)

whose growth rate is larger than that in GR. This leaves an imprint for the
measurement of red-shift space distortions in the galaxy power spectrum [76]. From
Eq. (4.193), the effective gravitational coupling evolves as ˚eff / t .

p
33�5/=6. This

modification affects the weak lensing power spectrum as well as the ISW effect in
CMB [77, 78].

In other modified gravity models like covariant Galileons [79], the growth rate
of perturbations is different from that in GR and f .R/ gravity. Although the current
observations are not enough to discriminate between different models precisely, we
hope that future observations will allow us to do so.



132 S. Tsujikawa

Conclusions
We have reviewed a framework for studying the most general four-
dimensional gravitational theories with a single scalar degree of freedom.
The EFT of cosmological perturbations is useful for the unified description
of modified gravitational theories in that it can be describe practically
all single-field models proposed in the literature. This unified scheme can
allow one to provide model-independent constraints on the properties of
inflation/dark energy and to put constraints on individual models consistent
with observations.

Starting from the general action (4.6) that depends on the lapseN and other
three-dimensional scalar ADM variables, we have expanded the action up to
quadratic order in cosmological perturbations about the FLRW background.
The choice of unitary gauge allows one to absorb dynamics of the field
perturbation ı� into the gravitational sector. Provided that the three conditions
(4.49)–(4.51) are satisfied, the second-order Lagrangian density reduces to the
simple form (4.54) with a single scalar degree of freedom characterized by
the curvature perturbation �. We have also shown that the quadratic action
for tensor perturbations is given by Eq. (4.60). In order to avoid ghosts
and Laplacian instabilities of scalar and tensor perturbations, we require the
conditionsQs > 0, c2s > 0, Qt > 0, and c2t > 0.

The most general scalar-tensor theories with second-order equations of
motion–Horndeski theory–belong to a sub-class of the action (4.6) in the
framework of EFT. The Horndeski Lagrangian can be expressed in terms of
the ADM scalar quantities in the form (4.110). Using the relations (4.138)–
(4.141) between the EFT variables appearing in the action (4.135) and the
partial derivatives of the Lagrangian L with respect to the ADM variables,
we have shown that, up to quadratic order in perturbations, Horndeski theory
corresponds to the action (4.143) with the additional condition m2

4 D �21.
The dictionary between the EFT variables and the functions Gi.�;X/ in
Horndeski theory is given by Eqs. (4.145)–(4.150).

In Sect. 4.4 we have also derived the power spectra of scalar and tensor
perturbations generated during inflation for general second-order theories
satisfying the conditions (4.49)–(4.51). The formulas (4.78) and (4.83) cover
a wide variety of modified gravitational theories presented in Sect. 4.5.1, so
they can be used for constraining each inflationary model from the CMB
observations (along the lines of [80]). In particular, it will be of interest
to discriminate between a host of single-field inflationary models from the
precise B-mode polarization data available in the future.

In Sect. 4.7 we have applied the EFT of cosmological perturbations to
dark energy in the presence of a barotropic perfect fluid. The background
cosmology is described by three time-dependent functions f , �, and c,

(continued)
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with which different models can be distinguished from the evolution of the
dark energy equation of state. In Horndeski theory, we have obtained the
effective gravitational coupling (4.189) appearing in the matter perturbation
equation (4.188) under the quasi-static approximation on sub-horizon scales.
Together with the effective gravitational potential given in Eq. (4.193), it will
be possible to discriminate between different modified gravity models from
the observations of large-scale structures, weak lensing, and CMB.

While we have studied the effective single-field scenario in unitary gauge,
another scalar degree of freedom can be also taken into account in the action
(4.6) [33]. Such a second scalar field can be potentially responsible for dark
matter. It will be of interest to provide a unified framework for understanding
the origins of inflation, dark energy, and dark matter.

Acknowledgements The author is grateful to the organizers of the 7th Aegean Summer School for
wonderful hospitality. The author thanks Antonio De Felice, Laszlo Arpad Gergely, and Federico
Piazza for useful discussions. This work was supported by Grant-in-Aid for Scientific Research
Fund of the JSPS (No. 30318802) and Grant-in-Aid for Scientific Research on Innovative Areas
(No. 21111006).

References

1. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
2. D. Kazanas, Astrophys. J. 241, L59 (1980); K. Sato, Mon. Not. R. Astron. Soc. 195, 467

(1981); Phys. Lett. 99B, 66 (1981); A.H. Guth, Phys. Rev. D 23, 347 (1981)
3. G.F. Smoot et al., Astrophys. J. 396, L1 (1992)
4. D.N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003)
5. P.A.R. Ade et al. [Planck Collaboration], (2014) [arXiv:1303.5076 [astro-ph.CO]]
6. V.F. Mukhanov, G.V. Chibisov, JETP Lett. 33, 532 (1981); A.H. Guth, S.Y. Pi, Phys. Rev. Lett.

49 (1982) 1110; S.W. Hawking, Phys. Lett. B 115, 295 (1982); A.A. Starobinsky, Phys. Lett.
B 117 (1982) 175; J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Phys. Rev. D 28, 679 (1983).

7. A.G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116, 1009 (1998) [astro-
ph/9805201]

8. S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517, 565
(1999) [astro-ph/9812133]

9. D.J. Eisenstein et al. [SDSS Collaboration], Astrophys. J. 633, 560 (2005) [astro-ph/0501171]
10. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)
11. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) [hep-th/0603057]
12. Y. Fujii, Phys. Rev. D 26, 2580 (1982); L.H. Ford, Phys. Rev. D 35, 2339 (1987); C. Wetterich,

Nucl. Phys B. 302, 668 (1988); T. Chiba, N. Sugiyama, T. Nakamura, Mon. Not. R. Astron.
Soc. 289, L5 (1997) [astro-ph/9704199]; P.G. Ferreira, M. Joyce, Phys. Rev. Lett. 79, 4740
(1997) [astro-ph/9707286]; R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582
(1998) [astro-ph/9708069]; T. Chiba, N. Sugiyama, T. Nakamura, Mon. Not. R. Astron. Soc.
301, 72 (1998) [astro-ph/9806332]; I. Zlatev, L.-M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82,
896 (1999) [astro-ph/9807002]



134 S. Tsujikawa

13. G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 208, 19 (2013)
[arXiv:1212.5226 [astro-ph.CO]]

14. T. Chiba, A. De Felice, S. Tsujikawa, Phys. Rev. D 87, 083505 (2013) [arXiv:1210.3859 [astro-
ph.CO]]

15. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) [arXiv:0805.1726 [gr-qc]]; A. De
Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010) [arXiv:1002.4928 [gr-qc]]; S. Tsujikawa,
Lect. Notes Phys. 800, 99 (2010) [arXiv:1101.0191 [gr-qc]]; T. Clifton, P.G. Ferreira,
A. Padilla, C. Skordis, Phys. Rept. 513, 1 (2012) [arXiv:1106.2476 [astro-ph.CO]]

16. P. Creminelli, M.A. Luty, A. Nicolis, L. Senatore, J. High Energy Phys. 0612, 080 (2006)
[hep-th/0606090]

17. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan, L. Senatore, J. High Energy Phys. 0803,
014 (2008) [arXiv:0709.0293 [hep-th]]

18. P. Creminelli, G. D’Amico, J. Norena, F. Vernizzi, JCAP 0902, 018 (2009) [arXiv:0811.0827
[astro-ph]]

19. S. Weinberg, Phys. Rev. D 72, 043514 (2005) [hep-th/0506236]
20. L. Senatore, K.M. Smith, M. Zaldarriaga, JCAP 1001, 028 (2010) [arXiv:0905.3746

[astro-ph.CO]]; N. Bartolo, M. Fasiello, S. Matarrese, A. Riotto, JCAP 1009, 035 (2010)
[arXiv:1006.5411 [astro-ph.CO]]; N. Agarwal, R. Holman, A.J. Tolley, J. Lin, J. High Energy
Phys. 1305, 085 (2013) [arXiv:1212.1172 [hep-th]]

21. M. Park, K.M. Zurek, S. Watson, Phys. Rev. D 81, 124008 (2010) [arXiv:1003.1722 [hep-th]]
22. J.K. Bloomfield, E.E. Flanagan, JCAP 1210, 039 (2012) [arXiv:1112.0303 [gr-qc]]
23. R.A. Battye, J.A. Pearson, JCAP 1207, 019 (2012) [arXiv:1203.0398 [hep-th]]
24. E.-M. Mueller, R. Bean, S. Watson, Phys. Rev. D 87, 083504 (2013) [arXiv:1209.2706 [astro-

ph.CO]]
25. G. Gubitosi, F. Piazza, F. Vernizzi, JCAP 1302, 032 (2013) [arXiv:1210.0201 [hep-th]]
26. J.K. Bloomfield, E. Flanagan, M. Park, S. Watson, JCAP 1308, 010 (2013) [arXiv:1211.7054

[astro-ph.CO]]
27. J. Bloomfield, JCAP 1312, 044 (2013) [arXiv:1304.6712 [astro-ph.CO]]
28. J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, JCAP 1308, 025 (2013) [arXiv:1304.4840 [hep-

th]]
29. F. Piazza, F. Vernizzi, Class. Quant. Grav. 30, 214007 (2013) [arXiv:1307.4350]
30. N. Frusciante, M. Raveri, A. Silvestri, JCAP 1402, 026 (2014) [arXiv:1310.6026 [astro-

ph.CO]]
31. B. Hu, M. Raveri, N. Frusciante, A. Silvestri, Phys. Rev. D 89, 103530 (2014)

[arXiv:1312.5742 [astro-ph.CO]]
32. F. Piazza, H. Steigerwald, C. Marinoni, JCAP 1405, 043 (2014) [arXiv:1312.6111 [astro-

ph.CO]]
33. L. Gergely, S. Tsujikawa, Phys. Rev. D 89, 064059 (2014) [arXiv:1402.0553 [hep-th]]
34. V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Phys. Rept. 215, 203 (1992)
35. T. Kobayashi, M. Yamaguchi, J.’I. Yokoyama, Prog. Theor. Phys. 126, 511 (2011)

[arXiv:1105.5723 [hep-th]]
36. A. De Felice, S. Tsujikawa, JCAP 1104, 029 (2011) [arXiv:1103.1172 [astro-ph.CO]]
37. X. Gao, D.A. Steer, JCAP 1112, 019 (2011) [arXiv:1107.2642 [astro-ph.CO]]
38. A. De Felice, S. Tsujikawa, Phys. Rev. D 84, 083504 (2011) [arXiv:1107.3917 [gr-qc]]
39. G.W. Horndeski, Int. J. Theor. Phys. 10, 363–384 (1974)
40. A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036 (2009) [arXiv:0811.2197 [hep-

th]]
41. C. Deffayet, G. Esposito-Farese, A. Vikman, Phys. Rev. D 79, 084003 (2009) [arXiv:0901.1314

[hep-th]]; C. Deffayet, S. Deser, G. Esposito-Farese, Phys. Rev. D 80, 064015 (2009)
[arXiv:0906.1967 [gr-qc]]

42. C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, Phys. Rev. Lett. 108, 051101 (2012)
[arXiv:1106.2000 [hep-th]]

43. C. Deffayet, X. Gao, D.A. Steer, G. Zahariade, Phys. Rev. D 84, 064039 (2011)
[arXiv:1103.3260 [hep-th]]



4 The Effective Field Theory of Inflation/Dark Energy and the Horndeski Theory 135

44. A. De Felice, T. Kobayashi, S. Tsujikawa, Phys. Lett. B 706, 123 (2011) [arXiv:1108.4242
[gr-qc]]

45. R.L. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. 117, 1595 (1960)
46. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, Phys. Lett. B 458, 209 (1999) [hep-

th/9904075]
47. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000) [astro-ph/9912463];

C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000) [astro-
ph/0004134]

48. J.M. Maldacena, J. High Energy Phys. 0305, 013 (2003) [astro-ph/0210603]
49. J. Garriga, V.F. Mukhanov, Phys. Lett. B 458, 219 (1999) [hep-th/9904176]
50. B.A. Bassett, S. Tsujikawa, D. Wands, Rev. Mod. Phys. 78, 537 (2006) [astro-ph/0507632]
51. X. Chen, M.-X. Huang, S. Kachru, G. Shiu, JCAP 0701, 002 (2007) [hep-th/0605045]
52. A. De Felice, S. Tsujikawa, JCAP 1303, 030 (2013) [arXiv:1301.5721 [hep-th]]
53. S. Das et al., arXiv:1301.1037 [astro-ph.CO]; C.L. Reichardt et al., Astrophys. J. 755, 70

(2012) [arXiv:1111.0932 [astro-ph.CO]]
54. P.A.R. Ade et al. [BICEP2 Collaboration], Phys. Rev. Lett. 112, 241101 (2014)

[arXiv:1403.3985 [astro-ph.CO]]
55. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)
56. M. Gasperini, G. Veneziano, Astropart. Phys. 1, 317 (1993) [hep-th/9211021]; M. Gasperini,

G. Veneziano, Phys. Rept. 373, 1 (2003) [hep-th/0207130]
57. F.L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008) [arXiv:0710.3755 [hep-th]]
58. T. Futamase, K.-I. Maeda, Phys. Rev. D 39, 399 (1989); R. Fakir, W.G. Unruh, Phys. Rev. D 41,

1783 (1990); J.L. Cervantes-Cota, H. Dehnen, Phys. Rev. D 51, 395 (1995) [astro-ph/9412032];
Nucl. Phys. B 442, 391 (1995) [astro-ph/9505069]

59. L. Amendola, Phys. Lett. B 301, 175 (1993) [gr-qc/9302010]
60. C. Germani, A. Kehagias, Phys. Rev. Lett. 105, 011302 (2010) [arXiv:1003.2635 [hep-ph]];

C. Germani, A. Kehagias, Phys. Rev. Lett. 106, 161302 (2011) [arXiv:1012.0853 [hep-ph]];
S. Tsujikawa, Phys. Rev. D 85, 083518 (2012) [arXiv:1201.5926 [astro-ph.CO]]

61. P. Creminelli, G. D’Amico, M. Musso, J. Norena, E. Trincherini, JCAP 1102, 006 (2011)
[arXiv:1011.3004 [hep-th]]

62. W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007) [arXiv:0705.1158 [astro-ph]]
63. S.A. Appleby, R.A. Battye, Phys. Lett. B 654, 7 (2007) [arXiv:0705.3199 [astro-ph]]
64. A.A. Starobinsky, JETP Lett. 86, 157 (2007) [arXiv:0706.2041 [astro-ph]]
65. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008) [arXiv:0709.1391 [astro-ph]]
66. E.V. Linder, Phys. Rev. D 80, 123528 (2009) [arXiv:0905.2962 [astro-ph.CO]]
67. F. Silva, K. Koyama, Phys. Rev. D 80, 121301 (2009) [arXiv:0909.4538 [astro-ph.CO]];

T. Kobayashi, Phys. Rev. D 81, 103533 (2010) [arXiv:1003.3281 [astro-ph.CO]]; C. Deffayet,
O. Pujolas, I. Sawicki, A. Vikman, JCAP 1010, 026 (2010) [arXiv:1008.0048 [hep-th]];
R. Gannouji, M. Sami, Phys. Rev. D 82, 024011 (2010) [arXiv:1004.2808 [gr-qc]]; A. De
Felice, S. Tsujikawa, Phys. Rev. Lett. 105, 111301 (2010) [arXiv:1007.2700 [astro-ph.CO]];
A. De Felice, S. Tsujikawa, Phys. Rev. D 84, 124029 (2011) [arXiv:1008.4236 [hep-th]]

68. J. Khoury, A. Weltman, Phys. Rev. Lett. 93, 171104 (2004) [astro-ph/0309300]; J. Khoury,
A. Weltman, Phys. Rev. D 69, 044026 (2004) [astro-ph/0309411]

69. S. Tsujikawa, K. Uddin, S. Mizuno, R. Tavakol, J.’I. Yokoyama, Phys. Rev. D 77, 103009
(2008) [arXiv:0803.1106 [astro-ph]]; R. Gannouji, B. Moraes, D.F. Mota, D. Polarski,
S. Tsujikawa, H.A. Winther, Phys. Rev. D 82, 124006 (2010) [arXiv:1010.3769 [astro-ph.CO]]

70. A.A. Starobinsky, JETP Lett. 68, 757 (1998) [Pisma Zh. Eksp. Teor. Fiz. 68, 721 (1998)]
[astro-ph/9810431]; B. Boisseau, G. Esposito-Farese, D. Polarski, A.A. Starobinsky, Phys.
Rev. Lett. 85, 2236 (2000) [gr-qc/0001066]; S. Tsujikawa, Phys. Rev. D 76, 023514 (2007)
[arXiv:0705.1032 [astro-ph]]; S. Nesseris, Phys. Rev. D 79, 044015 (2009) [arXiv:0811.4292
[astro-ph]]

71. C. Schimd, J.-P. Uzan, A. Riazuelo, Phys. Rev. D 71, 083512 (2005) [astro-ph/0412120];
L. Amendola, M. Kunz, D. Sapone, JCAP 0804, 013 (2008) [arXiv:0704.2421 [astro-ph]]

72. L.-M. Wang, P.J. Steinhardt, Astrophys. J. 508, 483 (1998) [astro-ph/9804015]



136 S. Tsujikawa

73. E.V. Linder, Phys. Rev. D 72, 043529 (2005) [astro-ph/0507263]
74. S. Tsujikawa, A. De Felice, J. Alcaniz, JCAP 1301, 030 (2013) [arXiv:1210.4239 [astro-

ph.CO]]
75. S. Tsujikawa, R. Gannouji, B. Moraes, D. Polarski, Phys. Rev. D 80, 084044 (2009)

[arXiv:0908.2669 [astro-ph.CO]]; H. Okada, T. Totani, S. Tsujikawa, Phys. Rev. D 87, 103002
(2013) [arXiv:1208.4681 [astro-ph.CO]]

76. M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 74, 123507 (2006) [astro-ph/0608632];
C. Blake et al., Mon. Not. R. Astron. Soc. 415, 2876 (2011) [arXiv:1104.2948 [astro-ph.CO]];
L. Samushia, W.J. Percival, A. Raccanelli, Mon. Not. R. Astron. Soc. 420, 2102 (2012)
[arXiv:1102.1014 [astro-ph.CO]]

77. S. Tsujikawa, T. Tatekawa, Phys. Lett. B 665, 325 (2008) [arXiv:0804.4343 [astro-ph]];
F. Schmidt, Phys. Rev. D 78, 043002 (2008) [arXiv:0805.4812 [astro-ph]]; E. Beynon,
D.J. Bacon, K. Koyama, Mon. Not. R. Astron. Soc. 403, 353 (2010) [arXiv:0910.1480 [astro-
ph.CO]]

78. Y.-S. Song, W. Hu, I. Sawicki, Phys. Rev. D 75, 044004 (2007) [astro-ph/0610532]; Y.-S. Song,
H. Peiris, W. Hu, Phys. Rev. D 76, 063517 (2007) [arXiv:0706.2399 [astro-ph]]

79. A. De Felice, R. Kase, S. Tsujikawa, Phys. Rev. D 83, 043515 (2011) [arXiv:1011.6132 [astro-
ph.CO]]

80. S. Tsujikawa, J. Ohashi, S. Kuroyanagi, A. De Felice, Phys. Rev. D 88, 023529 (2013)
[arXiv:1305.3044 [astro-ph.CO]]



Part II
Massive Gravity



Chapter 5
Introduction to Massive Gravity

Claudia de Rham

Abstract We review recent progress on massive gravity. We first show how extra
dimensions prove to be a useful tool in building theories of modified gravity,
including Galileon theories and their DBI extensions. DGP arises from an infinite
size extra dimension, and we show how massive gravity arises from ‘deconstructing’
the extra dimension in the vielbein formalism. We then explain how the ghost issue
is resolved in that special theory of massive gravity. The viability of such models
relies on the Vainshtein mechanism which is best described in terms of Galileons.
While its implementation is successful in most of these models it also comes hand
in hand with superluminalities and strong coupling which are reviewed and their
real consequences are discussed.

5.1 Gravitational Waves and Degrees of Freedom

5.1.1 Polarizations

One of the genuine predictions of General Relativity is the existence of a graviton
or massless spin-2 field under the Poincaré group which mediates the gravitational
force. The existence of this particle implies the presence of Gravitational Waves
(GWs). Whilst advanced LIGO and other interferometer [1] are expected to be on
the edge of discovering GWs, the indirect detection of GWs has been confirmed
for forty years via the spin-down of binary pulsars and particularly the Hulse
Taylor pulsar [2]. The spin-down is in perfect agreement with the emission of
gravitational radiation and the prediction that in GR gravitational waves have
two polarizations. Nevertheless this does not necessarily rule out the existence of
additional polarizations which could be screened for instance via the Vainshtein
mechanism see [3] and [4].
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Fig. 5.1 Polarizations of Gravitational Waves in General Relativity and potential additional
polarizations in modified gravity. From [6]

In modified theories of gravity GWs could have up to four additional polar-
izations: two ‘vector’ polarizations which mix the longitudinal and the transverse
directions, as well as two ‘scalar’ polarizations, one of each being a conformal or
breathing mode and the other one a purely longitudinal mode as depicted in Fig. 5.1.

These last four polarizations are absent in GR. However in theories of modified
gravity one could in principle excite them. For instance in massive gravity the
graviton is instead seen as a massive spin-2 field. In four dimensions, a massive
spin-s fields is known to propagate 2s C 1 dofs (degrees of freedom), so a massive
spin-2 field should propagate five dofs.

At the same time, massive gravity breaks diffeomorphism invariance, corre-
sponding to four symmetries in four dimensions. This means that we expect massive
gravity to propagate four dofs more than in GR, this would correspond to the four
additional polarizations depicted in Fig. 5.1. This corresponds to one additional
polarization compared to what a massive spin-2 field should have. If present, this
additional fourth new polarization is always pathological and enters as a ghost, now
commonly known as the Boulware–Deser (BD) ghost [5]. This BD ghost correspond
to the last polarization depicted in Fig. 5.1, namely the longitudinal scalar mode. So
for a theory of massive gravity to be free of the BD ghost it should only have at
most the three first additional polarizations of Fig. 5.1 and should not excite the last
one. In what follows we explain why the presence of a BD ghost would always
invalidate the theory and then proceed by constructing explicit models of massive
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gravity which are free from this pathology. We refer to [6] for a recent review on
massive gravity.

5.1.2 Implications of the BD Ghost

To understand the implications of the BD ghost, we consider a simple but repre-
sentative example of how this ghost can present itself. Let us consider a free scalar
field � with kinetic term1 �1=2.@�/2. For definiteness, one way the BD ghost can
manifest itself is via a new operator of the form .��/3 arising at a scale �,

L D �1
2
.@�/2 C 1

6�5
.��/3 : (5.1)

Considering the fluctuations about a non-trivial background � D �0 C ı�, with
say �0 D �3=8B0���x

�x� , the Lagrangian for the fluctuations is

L D �1
2
ı�

�
1C B0

�2
�
�

�ı� : (5.2)

The associated propagator has two poles signaling the presence of two dofs

G D 1�
1C B0

�2
��� D

1

� �
1

�C�2=B2
0

: (5.3)

The pole at zero mass represents the standard degree of freedom associated with �,
but we see a new pole with (tachyonic) mass square �2=B2

0 which always enters
with the wrong sign. So the new degree of freedom at �=B0 is a ghost.

We emphasize that a ghost represents a degree of freedom with the wrong sign
kinetic term and should be distinguished from a tachyon which corresponds to a
degree of freedom with the wrong sign mass term or an instability in the potential.
For a tachyon the scale of the instability is governed by the mass of the mode and we
can thus survive with small mass tachyonic modes as the time scale of the instability
is long compared to other process that may be taking place. For a ghost on the other
hand, the scale associated with the instability is the momentum of the field and so the
instability scale is always at least of the order of the cutoff of the theory. This implies
that if a ghost is present at a scale� then one cannot trust the theory beyond the scale
�. In the case of the BD ghost, the ghost enters at the background dependent scale
�=B0. By choosing an arbitrarily large background B0, one can brings the scale
at which the theory breaks down arbitrarily low, which would mean that one can

1In this contribution we use a mainly C convention and so �1=2.@�/2 represents the correct sign
kinetic term.
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never trust this theory, neither at the classical level nor at the quantum level. New
physics has to enter at the cutoff scale or at the scale �=B0 to help making sense of
the theory. This is distinct from having a low strong coupling scale where classical
predictions break down at that scale but not the quantum ones. New physics does
not need to enter at the strong coupling scale.

To summarize, a ghost leads to an arbitrarily fast instability already at the
classical level and signals the fact that the theory cannot be trusted neither classically
nor quantum mechanically at and above the mass of the ghost. However as we shall
see below the Vainshtein mechanism relies crucially on classical configurations
at the low scale �. It is therefore essential to be able to trust the theory at the
scale at which the first interactions enter (i.e., at the strong coupling scale). To get
some intuition on how to obtain a ghost-free theory of massive gravity and other
modifications of gravity a useful tool is to rely on a higher dimensional theory of
gravity. In some cases this higher-dimensional theory is merely a ‘mathematical
trick’ but it will show to provide useful insights.

5.2 Consistent Modifications of Gravity From Extra
Dimensions

One of the most straight-forward way to derive a sensible and theoretical con-
sistency theory of modified gravity is to start with General Relativity in higher
dimensions. Higher dimensional gravity is known to lead to consistent high energy
modifications of gravity. Here we shall focus on infrared (IR) modifications and see
how it can lead to different interconnected models like Galileon theories of DGP
and massive gravity which behave as Galileons in some limit. In the rest of this
contribution we will use the notation that y represents the fifth extra dimension and
x� are the 4d space-time coordinates. The 5d coordinates are given by fx˛g4˛D0 D
fx�; yg.

5.2.1 DBI–Galileon

5.2.1.1 Five-Dimensional Minkowski

Starting with five dimensional GR, we can consider all the Lovelock invariants
namely a cosmological constant (CC), a five dimensional scalar curvature R.5/ and
a Gauss-Bonnet (GB) invariant LGB. The presence of a cosmological constant leads
to a non-flat maximally symmetric 5d spacetime (AdS) and will be mentioned in
what follows. To start with we stick to a flat Minkowski 5d spacetime ds2 D
dy2 C ��� dx� dx� and set the CC to zero. In order to recover 4d gravity in some
regime we consider a probe brane located at y D �.x�/ and consider the boundary
terms induced by the Lovelock invariants. The scalar curvature leads to an extrinsic
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boundary term K on the brane and the GB to a related term KGB. Furthermore
induced on the brane one can consider a tension or a 4d CC 	 and a 4d induced
scalar curvature R.4/. If the brane is localized at y D �.x�/, the induced metric
on the brane is g�� D ��� C @��@�� leading to what will represent a disformal
coupling to matter. In the weak field limit, these invariants lead to a generalized
Galileon-DBI set of interactions in 4d [7],

5d 4d DBI �Galileon

	 ! L2 � �	
p
1 � .@�/2

R.5/ ! K ! L3 � .@��@��˘
��/=.1� .@�/2/

R.4/ ! L4 �
�
Œ˘�2 � Œ˘�2� =p1 � .@�/2 C 
 
 


LGB ! KGB ! L5 �
�
Œ˘�2 � 3Œ˘�Œ˘2�C 2Œ˘3�

�
=.1� .@�/2/C 
 
 
 ;

(5.4)

where here and in what follows ˘�� D @�@�� and square brackets represent the
trace of a tensor with respect to ��� , Œ˘� D ���˘�� , etc. In the weak field limit,
these invariants lead to the Galileon terms on the brane [8]

L2 D .@�/2
L3 D .@�/2 Œ˘�
L4 D .@�/2

�
Œ˘�2 � Œ˘2�

�
L5 D .@�/2

�
Œ˘�3 � 3Œ˘�Œ˘2�C 2Œ˘3�

�
:

(5.5)

This is a finite set of interactions and the fact that these terms be it in their exact
form (5.4) or in their weak field limit (5.5) derive from Lovelock invariants in five
dimensions ensures that they are ghost free. Furthermore Poincaré invariance in five
dimensions leads to the following four-dimensional global symmetry [7]

� ! � C c C v�x
� C �v�@�� ; (5.6)

for the interactions (5.4) and the Galilean symmetry for the Galileon interactions
(5.5)

� ! � C c C v�x
� : (5.7)

In addition they also satisfy a non-renormalization theorem [9] which means that
the coefficient governing any of these interactions can be set to any desired value
without the loops of the field itself destabilizing it.

5.2.1.2 Curved Five Dimensions

As mentioned previously, one can also consider a CC in five dimensions, leading
to 5d AdS rather than Minkowski. Since this is still a maximally symmetric



144 C. de Rham

spacetime, there is an equivalent to the symmetries presented in (5.6) or (5.7) for
Minkowski, simply involving the AdS curvature [7]. The results sets of interactions
are a Galileon generalization of the warped DBI and satisfy the same properties as
previously namely the absence of ghost and radiative stability.

One can also extend the setup to arbitrary matter in five dimensions leading
to an arbitrary five dimensional metric q�� . The induced metric on the brane is
then g�� D q�� C @��@�� and the resulting Galileon field � leaves on a curved
metric q�� . This leads to the covariant set of Galileon interactions first proposed
in [10] which remains free of ghost but does satisfy the Galileon symmetry nor a
generalized one. The reason is clear: the five dimensional spacetime is no longer
maximally symmetric and there is therefore no reason to expect any resulting global
symmetry.

These Galileon scalar fields can play an important role on cosmological scales
(for instance they can be a good candidate for dark energy) and yet remain frozen
on short distance scales thanks to a Vainshtein mechanism. Before describing this
mechanism in Sect. 5.5 (see also other contributions), we show how theories of
modified gravity are derived from extra dimensions.

5.2.2 Massive Gravity

5.2.2.1 Infinite Extra Dimension: DGP

If one is to start with five dimensional gravity to derive theories of IR modifications
of gravity one first needs to confine gravity in four dimensions. This can be
performed in two ways: Either by compactifying the extra dimension, which is
performed in Sects. 5.2.2.2 and 5.3 or by considering an large (even infinite) extra
dimension and inducing a four-dimensional curvature on a four-dimensional brane.
This is the idea behind the DGP (Dvali–Gabadadze–Porrati) model where we start
with five-dimensional gravity with a five-dimensional Planck scale M5 and induce
a four-dimensional curvature with Planck scale MPl in four dimensions [11]. The
effective Friedman equation on the brane is then [12]

M2
PlH

2 ˙M3
5H D  ; (5.8)

where H is the Hubble parameter and  the energy density of fields localized on
the four-dimensional brane. This modified Friedman equation has lead to a wealth
of new directions for testing cosmology.

The brane-bending mode on the brane behaves as a cubic Galileon [9], given by
L3 in (5.5). From a four-dimensional view point, the graviton is effectively massive
and at the linearized level it satisfies (symbolically) the following equation

���mp���h�� D M�1
Pl T�� ; (5.9)
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a b c

Fig. 5.2 Spectral representation of different models. (a) DGP, (b) higher-dimensional cascading
gravity and (c) multi-gravity. Bi-gravity is the special case of multi-gravity with one massless mode
and one massive mode. Massive gravity is the special case where only one massive mode couples
to the rest of the standard model and the other modes decouple. (a) and (b) are models of soft
massive gravity where the graviton mass can be thought of as a resonance. From [6]

wherem D M3
5 =M

2
Pl and the effective mass of the graviton is momentum-dependent

m2
eff.k/ D mk. So rather than having a fixed pole at the scale m, the propagator has

rather a resonance. In this sense DGP is a model of ‘soft-massive gravity’.
For DGP, the peak of the spectral distribution still occurs at zero mass as can

be seen in Fig. 5.2. However extensions of DGP to higher dimensions (known as
Cascading gravity [13–15]) can lead to a peak in the spectral representation as
depicted in Fig. 5.2 and are possibly closer to models of a hard mass graviton. In
what follows, we discuss an alternative way to derive a theory of massive gravity
from five dimensional GR, via Kaluza–Klein reduction or deconstruction.

5.2.2.2 Compact Extra Dimension

An alternative to the DGP model and its extensions is to consider a compact
extra dimension of size R. A Kaluza-Klein decomposition (discretization in the
momentum along the extra dimension) leads to a massless mode and an infinite
tower of massive Kaluza-Klein modes, with mass gap m D 1=R. Rather than
performing a Kaluza-Klein decomposition, one can also consider a deconstruction
of the extra dimension which is a discretization of the extra dimension directly
in real space rather than in momentum. Rather than considering a smooth extra
dimension 0 < y < R, we replace that direction by a series of N points yn. In the
large N limit one should in principle recover 5d GR but as we shall see below this
does not occur in some special gauge choices.

The deconstruction framework will be explained in more detail below and as we
shall see, for a finite number of site N one obtains a four-dimensional theory of N
interacting gravitons (multi-gravity), with one massless graviton andN �1massive
ones. Moreover this theory is identical to a truncated Kaluza-Klein decomposition
after a non-trivial field redefinition.

As we have seen before, in the case of an infinite extra dimension à la DGP, we
obtain a theory of gravity where the graviton acquires a soft mass or resonance.
In the case of a compact extra dimension, the deconstruction framework leads to a
finite number N of discrete graviton(s) with mass � n=R as can be seen from the
spectral representation in Fig. 5.2.
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In both cases starting from five-dimensional GR ensures (to some extend2) a
consistent resulting four-dimensional theory of modified gravity. Indeed a massless
graviton in 5d propagates 5 dofs which is precisely the right number of dofs that a
massive spin-2 field should propagate in 4d without the BD pathology discussed in
Sect. 5.1.2. In what follows we thus proceed by showing how 5d gravity can lead to
a consistent theory of 4d massive gravity free of the BD ghost.

5.3 Deconstruction and Massive Gravity

We now present how to deconstruct 5d GR and recover 4d multi-gravity. We will
then specialize to bi-gravity and to massive gravity as special cases. We follow the
formalism derived in [17].

Starting with 5d gravity in the Einstein–Cartan form, the 5d metric is given by

g˛ˇ.x; y/ D eA˛ .x; y/eBˇ .x; y/�AB : (5.10)

The connection is set of the torsionless condition,

!AB
˛ D

1

2
eC˛
�
OAB

C �OC AB �OB
C
A
�
; (5.11)

with OAB
C D 2eA˛eBˇ@Œ˛eˇ�C . The 5d curvature 2-form is then

RAB D d!AB C !AC ^ !CB : (5.12)

The 5d Einstein-Hilbert action is then

S
.5/
EH D

M3
5

2

Z
d4x dy

p�gR.5/Œg� (5.13)

D M3
5

2 � 3Š
Z
"ABCDER

AB ^ eC ^ eD ^ eE : (5.14)

Before we proceed with discretizing this action we first briefly discuss the gauge
choice we use.

5.3.1 Gauge-Fixing

The theory has 5 spacetime symmetries associated with 5d diffeomorphism invari-
ance. In addition in the veilbein language there are 10 Lorentz symmetries. As a

2There are some exceptions to the rule, see for instance [16].
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result one can make 15 gauge choices. We chose the following conditions on the
vielbein and the connection

eay D 0; e5� D 0; e5y D 1 �! 9 gauge fixing

!ab
y D e�Œa@yeb�� D 0 �! 6 gauge fixing ;

(5.15)

which fully fixes all the gauge freedom. The condition on the vielbein implies eA D�
ea� dx�; dy

�
and the condition on the connection implies the symmetric vielbein

condition. Interestingly this condition ensures that the theory can be written back in
terms of the metric. Here it appears as a simple consequence of our gauge choice.
In the metric language this gauge choice implies that the lapse is unity and the shift
vanishes, ds2 D dy2 C g��.x; y/ dx� dx� . We now proceed with discretizing 5d
GR in this gauge.

5.3.2 From 5d Gravity to 4d Multi-Gravity

In the gauge chosen previously, 5d GR can be written as

S
.5/
EH D

M3
5

2

Z
d4x dy

p�g �R.4/Œg�C ŒK�2 � ŒK2�
�
; (5.16)

whereK is the extrinsic curvature, in the metric language

K�� D 1

2
g�˛.x; y/@yg˛�.x; y/ : (5.17)

We now discretize the extra dimension as follows:

y �! yn

eaA.x; y/ �! en
a
A.x/

g��.x; y/ D �abea�.x; y/eb� .x; y/ �! g.n/�� .x/ D �abena�.x/enb�.x/ (5.18)

@ye.x; y/ �! m.enC1.x/ � en.x// ;
with m D N=R. Applying this discretization procedure on the extrinsic curvature,

K�
� � g�˛@yg˛� � e�1@ye ; (5.19)

and using the symmetric vielbein condition we obtain

K�
� ! me�1

n .enC1 � en/ D �m
�
ı�� �

q�
g.n/

��˛
g
.nC1/
˛�

�
(5.20)

� �mK �
� Œg

.n/; g.nC1/� � �mKn;nC1�� :



148 C. de Rham

Using this expression into the 5d Einstein-Hilbert action (5.16) we obtain [17]

L D M3
5

Z
dy
�
R.4/Œg�C ŒK�2 � ŒK2�

�
(5.21)

! M3
5

m

NX
nD1

�
R.4/n Cm2

�
ŒKn;nC1�2 � ŒK 2

n;nC1�
��
: (5.22)

This is a 4d theory of multi-gravity as presented in [18] with the specific interactions
governed by Kn;m derived in [19,20]. The 4d fundamental Planck scale is then given
by M2

Pl DM3
5 =.mN/ DM3

5R.

5.3.3 Generalized Mass Term

The multi-gravity theory derived previously has only one of the possible sets of
allowed interactions derived in [19, 20]. In the previous derivation we have applied
the most straightforward discretization procedure but there is some freedom on how
one wishes to define a field or its derivative at a point. To see the most general
discretization procedure it is convenient to return to the vielbein language where
rather than using

ea ! ean ; (5.23)

we may use the more general procedure

ea ! �
wean C .1 � w/eanC1

�
: (5.24)

The mass term then gets generalized to

p�g �ŒK�2 � ŒK2�
� D "abcde

a ^ eb ^ @yec ^ @yed (5.25)

! m2"abcd
�
w1e

a
n C .1 � w1/e

a
nC1

� ^ �w2ebn C .1 � w2/e
b
nC1

�
^ �ecn � ecnC1

� ^ �edn � ednC1
�

� m2p�g .L2.K /C .w1 C w2/L3.K /C w1w2L4.K // ;

where we recover the ghost-free interaction terms L2;3;4 first derived in [20]
(sometimes known as ‘dRGT’ mass terms or interactions),

2L2ŒK � D "abcd "a0b0cdK
a0

a K b0

b (5.26)

L3ŒK � D "abcd "a0b0c0dK
a0

a K b0

b K c0

c (5.27)

L4ŒK � D "abcd "a0b0c0d 0K a0

a K b0

b K c0

c K d 0

d ; (5.28)
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or equivalently,

L2ŒK � D �
ŒK 2� � ŒK �2

�
(5.29)

L3ŒK � D �
ŒK �2 � 3ŒK �ŒK 2�C 2ŒK 3�

�
(5.30)

L4ŒK � D �
ŒK �4 � 6ŒK 2�ŒK �2 C 3ŒK 2�2 C 8ŒK �ŒK 3� � 6ŒK 4�

�
: (5.31)

This structure is very similar to that of the Galileons [8] and as we shall see they are
indeed very closely related and are the essence of the absence of BD ghost.

5.3.4 Strong Coupling Scale

This theory of multi-gravity has one massless mode with 2 dofs and .N �1/massive
modes with 5 dofs each, meaning that there is no BD ghost for any mode. The
lightest mode has a mass m1 D 1=R D m=N , while the heaviest mode has a mass
set by m � Nm1 (in the large N limit.)

The strong coupling scale for this theory (the scale at which the lowest
interactions arise) is the same as for a normal (ghost-free) theory of massive gravity
and is given by de Rham and Gabadadze [19]

� D .MPlm
2
1/
1=3 ; (5.32)

where m1 is the mass of the lightest mode. Interestingly in what should be the
continuum limit R!1 orm1 ! 0 the degree of freedom that interact at the scale
� (namely the helicity-0 mode of the lightest mode), as well as all the other helicity-
0 modes entirely decouple in that limit. This means that in this specific theory, we
do not recover 5d GR in the limit R ! 1 or m1 ! 0 but rather N decoupled
massless spin-2 fields, .N � 1/ decoupled spin-0 fields and .N � 1/ decoupled
spin-1 fields. This decoupling is ensured by the low strong coupling scale (5.32)
and is responsible for the Vainshtein mechanism [3] and the absence of vDVZ (van
Dam–Veltman–Zakharov) discontinuity in the massless limit [21, 22]. In this sense
the strong coupling scale (5.32) is a desirable (and even required) feature of the
theory if one would like to be able to consider it as a truncated theory in its own
right.

There is an alternative to the low strong coupling scale (5.32) which implies
choosing a different gauge choice that what was performed here. If instead we keep
the lapse dynamical, the presence of low strong coupling scale is avoided but at the
price of introducing a ghost at the scale of the heaviest mode. This means that the
truncated theory is not consistent, and one should keep an infinite number of modes
or work at energy scales well below the mass of the heaviest mode. In that case one
recovers 5d GR in the continuum limit R!1 or m1 ! 0.
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5.3.5 Bi-Gravity

Focusing on a discretization with two sites only with respective metrics g�� and f�� ,
we obtain the following bi-gravity theory [23] with the same ghost-free interactions
[20]

Lg;f D M2
g

p�gRŒg�CM2
f

p�f RŒf � (5.33)

C m2MfMg

p�g
4X

nD0
˛nLn .K Œg; f �/ ; (5.34)

with

K �
� Œg; f � D ı�� �

�p
g�1f

��
�
: (5.35)

In the absence of the interaction governed by m, this would the theory of two non-
interactive massless spin-2 fields bearing 2 � 2 D 4 dofs. This theory would have
two copies of diffeomorphism invariance.

Including the interaction breaks one copy of diffeomorphism invariance which
excites three new dofs in the theory leading to a total of 4C3 D 7 dofs, which is the
correct counting for one massless mode and one massive mode which carry a total
of 2C 5 D 7 dofs without any BD ghost.

It is sometimes stated that unlike massive gravity bi-gravity does not break
diffeomorphism invariance. This statement is quite incorrect, just like massive
gravity, bi-gravity breaks one copy of diffeomorphism invariance and just like in
massive gravity four Stückelberg fields (only three of which are independent) should
be included in bi-gravity to restore that homeomorphism invariance.

5.3.6 Massive Gravity

We can now easily see how to obtain a theory of massive gravity and a decoupled
massless spin-2 field out of massive gravity.3 From simplicity let us imagine that
no matter couples directly to the metric f�� (such a coupling does not affect the
argument it simply allows to generalize massive gravity on arbitrary reference
metrics [24]) and we set ˛0 D ˛1 D 0. In that case it is useful to split the metric f��
as follows

3In reality multi-gravity was obtained out bi-gravity which was obtained out of massive gravity
but for pedagogical reasons it is more intuitive to derive bi-gravity from multi-gravity and massive
gravity from bi-gravity.
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f�� D ��� C 1

Mf

��� : (5.36)

Taking the scaling limit Mf ! 1 while keeping ��� fixed does not change the
number of dofs in the theory but simply decouples some of them. In this limit, we
obtain a theory of massive gravity and a decoupled massless-spin-2 field,

LMf !1 D M2
g

p�g
 
RŒg�Cm2

4X
nD2

˛nLn.K Œg; ��/

!
(5.37)

�1
2
��� OE ˛ˇ

�� �˛ˇ ;

where OE is the Lichnerowicz operator which is the healthy linearized kinetic term
for a massless spin-2 field. Notice that the second line is exact to all orders in �,
so the massless sector of the theory is not interacting at all, not even with itself.
Nevertheless it still carries the two standard dofs of a massless spin-2 field, and the
massive graviton carried in g�� carries five dofs, leading once again to the same
number of dofs as any other healthy bi-gravity theory.

As already mentioned, one could generalize this procedure to allow for a non-
trivial background metric, f�� D Nf�� C 1

Mf
��� before taking the limit Mf !1.

In that case, the resulting theory is massive gravity on the reference metric Nf�� and
a decoupled non-interacting massless spin-2 field.

The fact that this theory emerges from 5d GR which carries the correct number of
dofs for a massive graviton is suggestive that the theory of massive gravity we have
derived here does not suffer from the BD ghost. We shall prove this more explicitly
in what follows working both in the ADM language and in the decoupling limit.

5.4 Absence of Boulware–Deser Ghost

5.4.1 ADM Language

The presence of a BD ghost in a large class of massive gravity theories was origi-
nally presented in the ADM language [5]. Starting with the ADM decomposition,

ds2 D �N2
0 dt2 C 
ij

�
dxi CN i dt

� �
dxj CNj dt

�
; (5.38)

GR is special in that both the lapse and the shift are Lagrange multipliers,
propagating 4 first class constraints. This means that the phase space has a priori
6 � 2 dofs in 
ij and its conjugate momentum but 8 of them are removed by the
4 first class constraints, leading to a total of 4 D 2 � 2 dofs in phase space or 2
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dofs in field space which is the correct counting for GR (leading to the two first
polarizations presented in Fig. 5.1.)

Now focusing on massive gravity (without the decoupled linearized massless
spin-2 field), neither the lapse nor the shift remain linear. A priori this means that
one looses four first class constraints, and one is left with a priori 6 degrees of
freedom in 
ij in field space, which would correspond to the five expected dofs and
an additional sixth BD ghost, which as we have seen would always signal a disaster
(see Sect. 5.4.)

However this naive estimation does not account from the fact that not all the shift
and lapse are necessarily independent. As first explained in [19] and then carried out
in [20], the real criteria for determining the number of degrees of freedom in field
space in d spacetime dimensions is

# field space dof D 1

2
d.d � 1/� .d � rank .L// ; (5.39)

where the Hessian L�� is given by the second derivative of the potential U Dp�gPn ˛nLn,

L�� D @2U

@N�@N �
: (5.40)

In d D 2 dimensions, it was shown in [20] that the rank of L was 1 and so the
number of physical dofs in 2 dimensions is zero, as it should be for a healthy
spin-2 field without BD pathology. The counting carries through to any number
of dimensions and in d D 4 is was shown in [19] for special cases and then in [25]
in all generality that rankL D 3, for the special form of the potential given in (5.37)
and so in the theory given in (5.37) has only 5 and not 6 dofs in the massive spin-2
field. This theory is thus free of the BD ghost.

5.4.2 Decoupling Limit

The theory of multi-gravity presented previously breaks .N � 1/ copies of diffeo-
morphism invariance. To restore them one can introduce .N �1/ Stückelberg fields.
The same counting remains for bi-gravity and massive gravity. In what follows we
shall focus on the case of massive gravity bearing in mind that the same derivation
follows for bi- and multi-gravity as well as for New Massive Gravity (NMG) [26].

When formulating the theory of massive gravity, we made use of a reference
metric Nf�� which can be chosen to be Minkowski or other. We focus the discussion
on a Minkowski reference metric Nf�� D ��� but the essence of the argument
remains the same for other reference metrics. See for instance [27] for the
decoupling limit of a de Sitter reference metric. The existence of a reference metric
breaks diff invariance, but it can be restored by introducing four Stückelberg fields
�a which transform as scalar under local diffs
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��� ! Q��� D @��a@��b�ab ; (5.41)

where Q��� now transforms as a tensor under local diffs. Even if in bi-gravity the two
metrics are dynamical it does not change the fact that the interaction between the
two metrics breaks one copy of diff and the theory is not fully diff invariant unless
the same four Stückelberg fields are introduced. The same remain valid for NMG
and multi-gravity.

We can further split the Stückelberg fields into a helicity-0 and -1 modes:

�a D xa C 1

mMPl
Aa C 1

m2MPl
�ab@b� ; (5.42)

where the scales are introduced for later convenience and in what follows we only
focus on the helicity-0 mode � . The full decoupling limit including the vector Aa

was derived in [28].
Using the expression (5.41) into (5.35) with f�� ! Q��� , we see directly that

K �
� D

1

m2MPl
��˛˘˛� CO

�
1

MPl
h

�
; (5.43)

where we write the metric g�� as

g�� D ��� C 1

MPl
h�� : (5.44)

We now take the decoupling limit where MPl ! 1 and m ! 0 while keeping
the scale � D .m2MPl/

1=3 fixed. Clearly in this decoupling limit K ! ˘ and
the mass terms for massive gravity given in ((5.26)–(5.28)) or equivalently ((5.29)–
(5.31)) reduce to total derivatives. As a result to zeroth order in h=MPl the theory
has no ghost.

We now proceed to first order in h=MPl, to that order the mass term becomes

LmGR D M2
Pl
p�g

�
1

2
RCm2 .L2ŒK �C ˛3L3ŒK �C ˛4L4ŒK �/

�
(5.45)

L
.dec/

mGR D �
1

2
h�� OE ˛ˇ

�� h˛ˇ � h��
�
X.1/
�� C

1C 3˛3
�3

X.2/
�� C

˛3 C 4˛4
�6

X.3/
��

�
; (5.46)

where as OE is the Lichnerowicz operator and

X.1/�

�0 D "��˛ˇ"�0�0˛ˇ˘
�
�0 (5.47)

X.2/�

�0 D "��˛ˇ"�0�0˛0ˇ˘
�
�0˘

˛
˛0 (5.48)

X.3/�

�0 D "��˛ˇ"�0�0˛0ˇ0˘�
�0˘

˛
˛0˘

ˇ

ˇ0 : (5.49)
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This set of tensors satisfies some remarkable properties: First they are identically
conserved. Second they share a similar structure as Galileon interactions and
are indeed closely related. Third, they trivially satisfy the Galileon symmetry
by construction (and this already at the level of the Lagrangian unlike Galileon
interactions). Finally and most importantly, these interactions can be proven to have
no ghost. The reason for that is that their respective equations of motion never bear
more than two derivatives and theX00 bears no time derivative, while X0i carries at
most a single time derivative.

The helicity-0 and -2 modes can be ‘semi-diagonalized’ by performing a field
redefinition,

h�� D Nh�� C ���� C 1C 3˛3
�3

@��@�� ; (5.50)

leading to a Galileon theory

L .dec/
mGR D �

1

2
Nh�� OE ˛ˇ

��
Nh˛ˇ C

5X
nD2

cn

�3.n�2/L
.n/

Gal C
˛3 C 4˛4
�6

Nh��X.3/
�� ; (5.51)

where L .n/
Gal are the Galileon Lagrangian, L .n/

Gal D �X.n�1/�
� and the cn are

dimensionless coefficients related to the ˛n. We see that when ˛3 C 4˛4 D 0,
the helicity-2 and -0 modes fully decouple in this limit and the interactions for
the helicity-0 mode are pure Galileon interactions. The only two differences with
a standard Galileon model is that it only has one free parameter (namely ˛3) and the
coupling to matter includes a disformal contribution

Lmatter D 1

MPl
h��T

�� D 1

MPl

Nh��T �� C 1

MPl
�T

1C 3˛3
MPl�3

@��@��T
�� ; (5.52)

which can lead to specific observational signatures as the field now also couple to
radiation.

In [29, 30] the BD ghost was connected to the existence of an Ostrogradsky
instability in the decoupling limit. The fact the decoupling limit of this theory is
a Galileon which is known to be free of Ostrogradsky instability was therefore the
first indication that the theory was in fact free of the BD ghost. As explained earlier
this was later confirmed by a multitude of independent studies.

In what follows we will introduce the Vainshtein mechanism using the cubic
Galileon as a toy model and discuss the existence of superluminalities.

5.5 Vainshtein Mechanism

The essence of the Vainshtein mechanism, and its subtleties is already manifest in
the cubic Galileon
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Lcub D �1
2
.@�/2 C 1

�3
.@�/2�� C 1

MPl
�T : (5.53)

In the absence of the cubic interaction, the field � would always couple to matter
with gravitational strength and would be incompatible with observations. In what
follows we show how the cubic interaction at the low scale � � MPl is key in
screening this scalar field.

5.5.1 Redressed Coupling

Let us consider a macroscopic source NT and smaller perturbations on top of it, T D
NT C ıT . Similarly we may split the field as the configuration N� soured by NT and its

fluctuations � D N�Cı� . For definiteness we consider a constant source NT although
the argument is relatively unaffected by the precise form of source, so long as there
is a regime where NT � MPl�

3. The background configuration is then given by

N� D ��3Ax2 (5.54)

with A D � 1
24

0
@1 �

 
1C 6 NT

MPl�3

!1=21
A ' 1

4
p
6

s
NT

MPl�3
� 1 ; (5.55)

so N̆ � @2 N� � �3A� �3 (5.56)

On top of these background configuration, the effective Lagrangian for the
fluctuations is

Lı� D �Z
2
.@ı�/2 C 1

�3
.@ı�/2�ı� C 1

MPl
ı�ıT ; (5.57)

with

Z D 1C 24A : (5.58)

When NT � MPl�
3 then A � 1 and it follows that Z � 1. Next we canonically

normalize the field,

ı� D Z�1=2ı O� ; (5.59)

so that the properly canonically normalized field sees the effective Lagrangian

Lı O� D �1
2
.@ı O�/2 C 1

�3
?

.@ı O�/2�ı O� C 1

MPl

p
Z
ı O�ıT ; (5.60)
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with the new ‘redressed’ scale �� D �Z1=2 � �. As a result on the background
of the source T0 the field is no longer strongly coupled at the scale � but rather
at the much scale ��. Notice that at no point do we consider the scale � or ��
to be the cutoff, as it would simply not make sense to have a cutoff which is
background dependent unless some very peculiar mixing with high energy physics
occurs. Instead� (resp.��) are the scales at which tree-level unitarity breaks down.
This scale differs from the cutoff which is the scale at which new physics enters (see
[31] for other examples in physics where the strong coupling scale which dictates
the breakdown of tree-level unitarity is distinct from the cutoff scale at which new
physics enters.)

Moreover we see that the coupling to matter occurs at the new scale MPl

p
Z �

MPl. This means that in the vicinity of large sources T0 (for instance the Sun), the
coupling to other sources (for instance the planets of the solar system) is very much
suppressed. This is precisely how the Vainshtein mechanism succeeds at screening
the field � . In what follows we will show how this Vainshtein mechanism comes
at the price of allowing superluminal classical velocities. After reviewing a simple
example we shall see why the presence of these superluminalities do not imply
acausality.

5.5.2 Superluminalities

5.5.2.1 Classical Superluminalities

Similarly as seen previously, if we split the field into a background configuration
N� and a fluctuation ı� , with N̆�� D @�@� N� � �3 (by that we mean, that at least
some of the eigenvalues of N̆�� are larger than�3), then the fluctuations ı� see the
effective second order Lagrangian

L .2/ D �1
2
Z��@�ı�@�ı� ; (5.61)

with the effective metric

Z�� D ��� C 4

�3

� N̆ �� � Œ N̆ ����� : (5.62)

Now without loss of generality, at any point x one can perform a global Lorentz
transformation to a frame where Z�

� is diagonal. In that frame the speed of
propagation along the direction x1 is

c2s;1 D
Z1
1

Z0
0

D 1 � 4
�3

� N̆ 0
0 C N̆ 22 C N̆ 33

�
1 � 4

�3

� N̆ 1
1 C N̆ 22 C N̆ 33

� : (5.63)



5 Introduction to Massive Gravity 157

As a result, the field ı� propagates with superluminal classical (group and phase)
velocity along the direction x1 for any configuration admitting N̆ 00 > N̆ 11 at least at
one point. This is easily achieved, at least locally, for instance considering a plane
wave N� D F.x1 � t/ which satisfies the background equations of motion in the
absence of any source. Then the fluctuations travel with classical superluminal group
and phase velocity as soon as F 00 > 0 [32, 33].

5.5.2.2 Front Velocity and Causality

The existence of these classical superluminalities has been the object of much
concern and claims connecting them to acausality have been made. However it is
important to emphasize that causality is not determined from the classical group
or phase velocity but rather from the front velocity which is the high frequency
limit of the phase velocity. As a consequence quantum corrections ought to be
included in order to compute the front velocity and before any claims may be made
on the causality of the theory. This is especially important in the context of these
theories since we have seen that the strong coupling scale, or scale at which tree-
level calculations can no longer be trusted depend on the background. As a result
the tree-level (or classical) calculation presented above of the front velocity are only
valid at low energy and break down precisely in the regime where one would want
to connect it with causality. Consequently there has been so far no evidence that
massive gravity or other theories that exhibit the Vainshtein mechanism are causal
or acausal.

5.5.2.3 Galileon Duality

To emphasize further how the notion of classical group or front velocity can be
misleading we perform a coordinate and field redefinition to specific example of
quintic Galileon. Consider the following quintic Galileon [33],

Squintic D
Z

d4x

�
� 1
12

L .2/
Gal C

1

6�3
L .3/

Gal �
1

8�6
L .4/

Gal C
1

30�9
L .5/

Gal

�
; (5.64)

where the Galileon Lagrangian are given below Eq. (5.51). The same analysis as
for the cubic Galileon applies here and similarly it is straightforward to find exact
solutions in the absence of matter which exhibits superluminal propagation along
any direction for the field fluctuation ı� .

Now performing the following combined field and coordinate transformation

x� ! Qx� D x� C 1

�3
@�.x/ (5.65)

�.x/ ! . Qx/ D �.x/C 1

�3
.@�.x//2 ; (5.66)

the quintic Galileon theory introduced in (5.64) simplifies to a free theory for  [33]
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Squintic ! QS D
Z

d4x

�
�1
2
.@/2

�
; (5.67)

which can never exhibit any superluminalities and is manifestly causal. This does
not mean that the causal structure between the two representations is different,
quite the opposite the causal structure is the same but is distinct from the notion of
superluminalities. This comes to show how the notion of classical superluminality
can be misleading and one ought to keep track of the front velocity (with in this case
its full quantum corrections) in order to infer whether or not the theory is causal.

5.6 Summary and Outlook

In this proceedings we have reviewed how to derive consistent and ghost-free four-
dimensional theories of massive gravity using five-dimensional General Relativity
as our starting point. In the case of an infinite extra dimension, gravity may be
localized in four dimensions by inducing a four-dimensional Einstein Hilbert term
on a four-dimensional brane. Depending on the setup, this leads to a general DBI-
Galileon model or to a soft theory of massive gravity known as DGP. Alternatively
for finite size-extra dimensions, a discretization of this extra dimension (either in
real space or in Fourier space) leads to a ghost-free theory of massive gravity
(sometimes known as dRGT) provided the discretization is performed in the
vielbein formalism. Galileons are ubiquitous to all these theories of massive gravity
and provide a simple way to understand the Vainshtein mechanism whereby the
helicity-0 mode of the graviton is screened in the vicinity of large matter sources.
This Vainshtein mechanism is also shown to come hand in hand with classical
superluminalities. While superluminalities in the front velocity would indeed imply
acausality superluminal classical group and front velocities do not have the same
implications and have been observed in nature. In order to comment on the causality
of the theory it is therefore essential to find a prescription which allows us to
compute the front velocity with all its quantum corrections. This is where the
Vainshtein mechanism and its implementation at the quantum level could come in
useful.
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Chapter 6
Hairy Black Holes in Theories with Massive
Gravitons

Mikhail S. Volkov

Abstract This is a brief survey of the known black hole solutions in the theories
of ghost-free bigravity and massive gravity. Various black holes exist in these
theories, in particular those supporting a massive graviton hair. However, it seems
that solutions which could be astrophysically relevant are the same as in General
Relativity, or very close to them. Therefore, the no-hair conjecture essentially
applies, and so it would be hard to detect the graviton mass by observing black
holes.

6.1 Black Holes and the No-Hair Conjecture

More than 40 year ago J.A. Wheeler summarized the progress in the area of black
hole physics at the time by his famous phrase: black holes have no hair [1]. More
precisely, this means that

• All stationary black holes are completely characterized by their mass, angular
momentum, and electric charge measurable from infinity.

• Black holes cannot support hairD external fields distributed close to the horizon
but not seen from infinity.

Therefore, according to the ho-hair conjecture, the only allowed characteristics of
stationary black holes are those associated with the Gauss law. The logic behind
this is the following. Black holes are formed in the gravitational collapse, which
is so violent a process that it breaks all the usual conservation laws not related to
the exact symmetries. For example, the chemical content, the baryon number, etc.
are not conserved during the collapse—the black hole ‘swallows’ all the memory
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of them. Everything that can be absorbed by the black hole gets absorbed. Only
few exact local symmetries, such as the local Lorentz or local U(1), can survive the
gravitational collapse. Associated to them conserved quantities—the mass, angular
momentum, and electric charge—cannot be absorbed by the black hole and remain
attached to it as parameters. They give rise to the Gaussian fluxes that can be
measured at infinity.

The no-hair conjecture essentially implies that the only asymptotically flat black
holes in Nature should be those described by the Kerr-Newman solutions. And
indeed, a number of the uniqueness theorems [2–4] confirm that all stationary and
asymptotically flat electrovacuum black holes with a non-degenerate horizon should
belong to the Kerr-Newman family.

The electrovacuum uniqueness theorems do not directly apply to systems with
matter fields other than the electromagnetic field. The field equations for such
systems read schematically

G�� D 8�GT��.�/; �� D V.�/; (6.1)

where � denotes the matter field, or several interacting matter fields. One can
wonder if these equations admit asymptotically flat black hole solutions with the
curvature bounded everywhere outside the black hole horizon. According to the no-
hair conjecture, the answer should be negative, but to prove this requires considering
each matter type separately. In view of this, a number of the no-hair theorems have
been proven to confirm the absence of static black hole solutions of Eq. (6.1) in the
cases where � denotes scalar, spinor, etc. fields [5–10]. The common feature in all
these cases is that if � does not vanish, then the field equations require that it should
diverge at the black hole horizon, where the curvature diverges too. Therefore, to
get regular black holes one is bound to set � D 0, but then the solution is a
vacuum black hole belonging to the Kerr-Newman family.1 All this confirms the
non-existence of hairy black holes.

The first explicit evidence against the no-hair conjecture was found 20 years after
its formulation, in the context of the Einstein-Yang-Mills theory with gauge group
SU(2). This theory contains all the electrovacuum solutions, hence all Kerr-Newman
black holes [13], because the electromagnetic U(1) gauge group is contained in
SU(2). However, it also admits static black holes supporting a non-trivial Yang-Mills
field which asymptotically decays as 1=r3, so that the corresponding Gaussian flux
is zero [14, 15]. Close to the horizon the geometry deviates from the Schwarzschild
one, but the deviations rapidly decay with distance and cannot be seen from infinity.
Therefore, such black holes support a hair.

Subsequent developments have revealed that the Einstein-Yang-Mills black holes
can be generalized to include scalar fields, as for example a Higgs field, which leads

1It has recently been shown that these arguments can be circumvented for fine-tuned black hole
mass and angular momentum [11]. This allows one to construct spinning hairy black holes which
do not admit a static limit [12].
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to a variety of new solutions describing hairy black holes [16]. In particular, it turns
out that regular gravitating solitons, as for example gravitating magnetic monopoles
or gravitating Skyrmions, can be generalized to contain inside a small black hole.
This gives rise to black holes with a ‘solitonic hair’. However, when the black hole
size exceeds a certain critical value, the black hole ‘swallows the soliton’ and ‘looses
its hair’, becoming a Kerr-Newman black hole [16].

Yet more hairy black holes can be obtained in models inspired by string theory
and including a dilaton [17], the curvature corrections and so on [16]. Adding a
cosmological term, positive or negative, gives asymptotically (anti)-de Sitter hairy
black holes [18]. Summarizing, one can say that hairy black holes arise generically
in physical models. However, large hairy black holes are typically unstable and loose
the hair when perturbed, whereas the stable ones are typically very small [16]. As
a result, despite a large number of solutions describing hairy black holes in various
systems, it seems that the no-hair conjecture essentially holds for the astrophysical
black holes, all of which should be of the Kerr-Newman type.

In what follows we shall be considering black holes in theories with massive
gravitons—the ghost-free bigravity and massive gravity. Some of these black
holes are of the known Kerr-Newman(-de Sitter) type, but there are also black
holes supporting a massive graviton hair. However, the hairy black holes turn out
to be either asymptotically anti-de Sitter (AdS), or cosmologically large, which
contradicts the observations. Therefore, the astrophysical black holes should be
described by the Kerr-Newman(-de Sitter) metrics, possibly with small corrections
in the near-horizon region, so that the no-hair conjecture essentially holds.

6.2 Theories with Massive Gravitons

The idea that gravitons could have a tiny mass was proposed long ago [19], but it
attracted a particular interest after the recent discovery of the special massive gravity
theory by de Rham, Gabadadze, and Tolley (dRGT) [20] (see [21,22] for a review).
Before this discovery it had been known that the massive gravity theory generically
had six propagating degrees of freedom (Dof). Five of them could be associated
with the polarizations of the massive graviton, while the sixth one, usually called
Boulware-Deser (BD) ghost, is unphysical, because it has a negative kinetic energy
and renders the whole theory unstable [23]. The specialty of the dRGT theory is
that it contains two Hamiltonian constraints which eliminate one of the six Dof
[24–28]. Therefore, there remain just the right number of Dof to describe massive
gravitons and so the theory is referred to as ghost-free. This does not mean that
all solutions are stable in this theory, since there could be other instabilities, which
should be checked in each particular case. However, since the most dangerous BD
ghost instability is absent, the theory of [20] and its bigravity generalization [29] can
be considered as healthy physical models for interpreting the observational data.

These theories can be used to explain the current cosmic acceleration [30, 31].
This acceleration could be accounted for by introducing a cosmological term in
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Einstein equations, however, this would pose the problem of explaining the origin
and value of this term. An alternative possibility is to consider modifications of Gen-
eral Relativity (GR), and theories with massive gravitons are natural candidates for
this, since the graviton mass can effectively manifest itself as a small cosmological
term [32].

Theories with massive gravitons are described by two metrics, g�� and f�� .
In massive gravity theories the f-metric is non-dynamical and is usually chosen
to be flat, although other choices are also possible, while the dynamical g-metric
describes massive gravitons. In bigravity theories [29] both metrics are dynamical
and describe together two gravitons, one massive and one massless. The theory
contains two gravitational couplings, �g and �f , and in the �f ! 0 limit the f-
metric decouples and can be chosen to be flat. Therefore, the bigravity theory is
more general, while the massive gravity theory can be viewed as its special case.

All known bigravity black holes were obtained in [33] (see also [34]), with the
exception of special solutions discovered in [35]. These black holes can be divided
into three types. First, there are solutions for which the two metrics are proportional,
f�� D C2g�� with a constant C , where g�� fulfills the Einstein equations with a
cosmological term �.C/ / m2. If C D 1 then� D 0 and one obtains all solutions
of the vacuum GR, in particular the vacuum black holes. For other values of C one
has �.C/ ¤ 0, which gives rise to black holes with a cosmological term. None of
these solutions fulfill equations of the massive gravity theory with a flat f.

Secondly, imposing spherical symmetry, there are black holes described by two
metrics which are not simultaneously diagonal. They formally decouple one from
the other and each of them fulfills its own set of Einstein equations with its own
cosmological term. The g-metric is Schwarzschild-de Sitter, whereas the f-metric
can be chosen to be AdS, with �f � �2f , and it becomes flat when �f ! 0,
in which limit the dRGT massive gravity is naturally recovered. Therefore, these
solutions exist both in the bigravity and dRGT massive gravity theories. In the latter
case they exhaust all known black hole solutions.

Solutions of the third type are obtained when the two metrics are both diagonal
but not proportional. One obtains in this case more complex solutions describing
static black holes with a massive graviton hair, which can be either asymptotically
AdS [33], or asymptotically flat [35], although in the latter case their size should be
comparable with the Hubble radius.

A more detailed description of the currently known bigravity and massive gravity
black holes is given below.

6.3 Ghost-Free Bigravity

The theory of the ghost-free bigravity [29] is defined on a four-dimensional
spacetime manifold equipped with two metrics, g�� and f�� , which describe two
interacting gravitons, one massive and one massless. The kinetic term for each
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metric is chosen to be of the standard Einstein-Hilbert form, while the interaction
between them is described by a local potential U Œg; f � which does not contain
derivatives and is expressed by a scalar function of the tensor


�� D
p
g�˛f˛�: (6.2)

Here g�� is the inverse of g�� and the square root is understood in the matrix sense,
i.e.

.
2/�� � 
�˛
˛� D g�˛f˛� : (6.3)

The action is (with the metric signature �CCC)

SŒg; f � D 1

2�2g

Z
d4x
p�g R.g/C 1

2�2f

Z
d4x

p�f R.f /

�m
2

�2

Z
d4x
p�gU Œg; f � ; (6.4)

where R and R are the Ricci scalars for g�� and f�� , respectively, �2g D 8�G and
�2f D 8�G are the corresponding gravitational couplings, while �2 D �2g C �2f and
m is the graviton mass. The interaction between the two metrics is given by

U D
4X

kD0
bk Uk.
/; (6.5)

where bk are parameters, while Uk.
/ are defined by the relations

U0.
/ D 1; U1.
/ D
X
A

	A D Œ
�;

U2.
/ D
X
A<B

	A	B D 1

2Š
.Œ
�2 � Œ
2�/;

U3.
/ D
X

A<B<C

	A	B	C D 1

3Š
.Œ
�3 � 3Œ
�Œ
2�C 2Œ
3�/;

U4.
/ D 	0	1	2	3 D 1

4Š
.Œ
�4 � 6Œ
�2Œ
2�C 8Œ
�Œ
3�C 3Œ
2�2 � 6Œ
4�/ : (6.6)

Here 	A (A D 0; 1; 2; 3) are the eigenvalues of 
�� , and, using the hat to denote
matrices, one has defined Œ
� D tr. O
/ � 


�
�, Œ
k� D tr. O
k/ � .
k/

�
�. The (real)

parameters bk could be arbitrary, however, if one requires flat space to be a solution
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of the theory, and m to be the Fierz-Pauli mass of the graviton [19], then the five
bk’s are expressed in terms of two free parameters c3; c4 as follows:

b0 D 4c3 C c4 � 6; b1 D 3 � 3c3 � c4; b2 D 2c3 C c4 � 1;
b3 D �.c3 C c4/; b4 D c4: (6.7)

The theory (6.4) propagates 7 D 5C2Dof corresponding to the polarizations of two
gravitons, one massive and one massless. Before this theory was discovered [29],
more general bigravity models, sometimes called f-g theories, had been considered
[36]. In these models the potential U is a scalar function of H�

� D ı�� � g�˛f˛� of
the form

U D 1

8
.H�

�H
�
� � .H�

�/
2/C : : : ; (6.8)

where the dots denote all possible higher order scalars made of H�
� . A particular

choice of these terms leads to (6.5). The generic f-g theories propagate 7C 1 Dof,
the additional one being the BD ghost [23].

Introducing the mixing angle � such that �g D � cos�, �f D � sin � and varying
the action (6.4) gives the field equations

G�
� D m2 cos2 � T �� ; (6.9)

G �
� D m2 sin2 �T �

� ; (6.10)

where G
�
� and G �

� are the Einstein tensors for g�� and f�� . The graviton
energy-momentum tensors obtained by varying the interaction U are

T �� D ��� �U ı�� ; T �
� D �

p�gp�f ��� ; (6.11)

where

��� D fb1U0 C b2U1 C b3U2 C b4U3g
��
�fb2U0 C b3U1 C b4U2g.
2/��
Cfb3U0 C b4U1g.
3/��
�b4U0 .


4/�� ; (6.12)

with Uk � Uk.
/. The Bianchi identities for (6.9) and (6.10) imply that

.g/

r � T �� D 0;
.f /

r �T
�
� D 0; (6.13)
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where
.g/

r and
.f /

r are the covariant derivatives with respect to g�� and f�� . In fact,
the latter of these conditions is not independent and follows from the former one in
view of the diffeomorphism invariance of the interaction term.

If �! 0 and sin2 �T �
� ! 0, then Eq. (6.10) for the f-metric decouple and their

solution enters the g-equations (6.9) as a fixed reference metric. The g-equations
describe in this case a massive gravity theory. If f becomes flat for �! 0, then one
recovers the dRGT theory [20]. Therefore, the massive gravity theory is contained
in the bigravity.

6.4 Proportional Backgrounds

The simplest solutions of the bigravity equations are obtained by assuming the two
metrics to be proportional [33, 37],

f�� D C2g��: (6.14)

The energy-momentum tensors (6.11) then become

T �� D ��g.C /ı
�
�; T �

� D ��f .C /ı
�
� ; (6.15)

with

�g.C / D m2 cos2 �
�
b0 C 3b1 C C 3b2 C 2 C b3 C 3

�
;

�f .C / D m2 sin2 �

C 3

�
b1 C 3b2C C 3b3C 2 C b4C 3

�
: (6.16)

Since the energy-momentum tensors should be conserved, it follows that C is a
constant. As a result, one obtains two sets of Einstein equations,

G�
� C�g.C /ı

�
� D 0 ; G �

� C�f .C /ı
�
� D 0 : (6.17)

Since one hasG �
� D G�

�=C
2, it follows that�f D �g=C

2, which gives an algebraic
equation for C . If the parameters bk are chosen according to Eq. (6.7), then this
equation reads

0 D .C � 1/Œ.c3 C c4/C 3 C .3 � 5c3 C .� � 2/c4/C 2

C..4 � 3�/c3 C .1 � 2�/c4 � 6/C C .3c3 C c4 � 1/��; (6.18)

with � D tan2 �, while the cosmological constant is

�g

m2 cos2 �
D .1�C/..c3C c4/C 2C .3� 5c3 � 2c4/C C 4c3C c4 � 6/: (6.19)
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Depending on values of c3; c4; �, Eq. (6.18) can have up to four real roots, so that
there can be solutions with four different values of the cosmological constant, which
can be positive, negative, or zero.

One solution of (6.18) is C D 1, in which case the two metrics coincide, g�� D
f�� , while �g D 0, so that the vacuum GR is recovered. Therefore, the black hole
solutions obtained in this case are either Kerr, or Kerr-de Sitter, or Kerr-AdS. None
of these solutions admit the massive gravity limit with a flat f-metric.

6.5 Solutions with Non-Bidiagonal Metrics

Let us assume both metrics to be invariant under spatial SO(3) rotations. Since
the theory is invariant under diffeomorphisms, one can choose the spacetime
coordinates such that the g-metric is diagonal. However, the f-metric will in general
contain an off-diagonal term, so that the two metrics can be parameterized as

ds2g D �N2dt2 C dr2

�2
CR2d˝2 ;

ds2f D �
�

aNdtC c

�
dr
�2 C

�
cNdt � b

�
dr

�2
C u2R2d˝2 ; (6.20)

with d˝2 D d#2 C sin2 #d'2 . The amplitudes N;�;R depend on r , while
a; b; c; u can in general depend on t; r . It is straightforward to check that the matrix
square root is


�� D
p
g�˛f˛� D

0
BB@

a c=.�N/ 0 0

�c�N b 0 0

0 0 u 0
0 0 0 u

1
CCA ; (6.21)

whose eigenvalues are

	0;1 D 1

2

�
aC b ˙

p
.a � b/2 � 4c2

�
; 	2 D 	3 D u: (6.22)

Inserting this to (6.6) gives

U1 D aC b C 2u; U2 D u.uC 2aC 2b/C ab C c2 ;
U3 D u .auC buC 2ab C 2c2/; U4 D u2.ab C c2/: (6.23)

Although the eigenvalues (6.22) can be complex-valued, the Uk’s are always real.
It is straightforward to compute the energy-momentum tensors T �� and T

�
� defined
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by Eqs .(6.11),(6.12). In particular, one finds

T 0r D
c

�N
Œb1 C 2b2uC b3u2�: (6.24)

Since the g-metric is static, there is no radial energy flux, and so T 0r should be zero.
Therefore, either c should vanish, or the expression in brackets in (6.24) vanishes.
The former option will be considered in the next section, while presently let us
assume that c ¤ 0 and

b1 C 2b2uC b3u2 D 0: (6.25)

This yields

u D 1

b3

�
�b2 ˙

q
b22 � b1b3

�
: (6.26)

Notice that u was a priori a function of t; r , but now it is restricted to be a constant.
Using this, one finds that T 00 D T rr D �	g and T 0

0 D T r
r D �	f where

	g D b0 C 2b1uC b2u2; 	f D b2 C 2b3uC b4u2
u2

: (6.27)

The conditions
.g/

r  T 	 D 0 reduce in this case to the requirement that T 00 � T ##
should vanish. On the other hand, one finds

T 00 � T ## D .b2 C b3u/Œ.u � a/.u � b/C c2�; (6.28)

and since this has to vanish, either the first or the second factor on the right should be
zero. Let us assume that one of these conditions is fulfilled. Then one has T 00 D T ##
and T 0

0 D T #
# , hence both energy-momentum tensors are proportional to the unit

tensor, T �� D �	gı�� and T �
� D �	f ı�� . The field equations (6.9) then reduce to

G


	 C�gı


	 D 0 ; (6.29)

G


	 C�f ı


	 D 0 ; (6.30)

where

�g D m2 cos2 � 	g; �f D m2 sin2 � 	f : (6.31)

As a result, the two metrics decouple one from the other, and the graviton mass
gives rise to the two cosmological terms. If the parameters bk are chosen according
to (6.7), then 	g C u2	f D �.u � 1/2, therefore, if �g > 0 then �f < 0.
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Since we want the g-metric to describe a black hole geometry, the solution of
(6.29) is the Schwarzschild-de Sitter metric. On the other hand, as the cosmological
term for the f-metric is negative, the solution of (6.30) can be chosen to be AdS.
Therefore,

ds2g D �˙.r/ dt2 C dr2

˙.r/
C r2d˝2 ; ˙.r/ D 1 � 2M

r
� �g

3
r2;

ds2f D �D.U / dT2 C dU2

D.U /
C U 2d˝2 ; D.U / D 1 � �f

3
U 2; (6.32)

with U D ur . It is worth noting that, since �f � sin2 � ! 0 when � ! 0, the f-
metric becomes flat in this limit. Therefore, the solutions apply both in the bigravity
theory and in the dRGT massive gravity.

6.5.1 Imposing the Consistency Condition

The solution (6.32) is not yet complete, since the two metrics are expressed in
two different coordinate systems, t; r and T;U , whose relation to each other is not
known. One has U D ur but the function T .t; r/ is still undetermined. We therefore
remember that up to now we have not considered the consistency condition, which
requires that the expression in (6.28) should vanish. This condition will be fulfilled
in either of the following two cases:

I: .b2 C b3u/ D 0I (6.33)

II: .u � a/.u � b/C c2 D 0: (6.34)

In case I, since u is already expressed in terms of b1; b2; b3 by Eq. (6.26), the
condition (6.33) imposes a constraint on values of these parameters. Therefore,
this condition is possible only for the special subclass of the theory characterized
by the restricted values of bk . Within this subclass the consistency condition is
fulfilled without specifying T .t; r/. Therefore, the function T .t; r/ in (6.32) remains
arbitrary, which can probably be traced to a some kind of hidden gauge invariance.

In case II no restrictions on the coefficients bk arise, so that this case is generic.
The coefficients a; b; c can be obtained by comparing the line element ds2f in (6.20)
with that in (6.32), which gives

a2 � c2 D D PT 2
˙

; b2� c2 D ˙
�

u2

D
�DT 02

�
; c.aC b/ D D PT T 0 : (6.35)
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Resolving these relations with respect to a; b; c and inserting the result to (6.34)
yields the equation,

D

˙
PT 2 C ˙D

˙ �D
T 02 D 1 ; (6.36)

with T D uT . A simple solution can be obtained by separating the variables,

T D t C
Z

dr

˙
�
Z

dr

D
� t C r �̇ � r�

D : (6.37)

One can think that this solution is singular, since the tortoise coordinate r �̇
diverges at the black hole and cosmological horizons, where ˙ vanishes. However,
introducing the light-like coordinate

V D t C r �̇ D T C r�
D ; (6.38)

both metrics can be written in the Eddington-Finkelstein form

ds2g D �˙dV2 C 2dVdrC r2d˝2 ;

1

u2
ds2f D �DdV2 C 2dVdrC r2d˝2 ; (6.39)

from where it is obvious that the solution is regular. This solution is valid for all
values of the parameters bk . All the above solutions have been obtained in the
ghost-free bigravity context in [33] (see also [34]), but in fact solutions of this type
were considered already long ago in the generic f-g bigravity theories [38–40]. The
generalization for a nonzero electric charge was considered in [41].

Since the f-metric becomes flat for � ! 0, the solutions describe in this limit
black holes in the dRGT massive gravity. In this context they were studied in [42,43]
for the special case I, and in [44,45] for the generic case II. These solutions and their
generalization for a nonzero electric charge [42,43,46] exhaust all static, spherically
symmetric black holes in the dRGT theory.

6.6 Hairy Black Holes, Lumps, and Stars

Black holes considered in the previous two sections are described by the known
GR metrics. New black holes are obtained in the case where the two metrics are
simultaneously diagonal [33],

ds2g D N2dt2 � dr2

�2
� r2d˝2; ds2f D A2dt2 � U

02

Y 2
dr2 � U 2d˝2 : (6.40)
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Here N;�; Y; U;A are five functions of r which fulfill the equations

G0
0 D m2cos2 � T 00 ; Gr

r D m2 cos2 � T rr ;

G 0
0 D m2 sin2 �T 0

0 ; G r
r D m2 sin2 �T r

r ;

T rr
0 C N 0

N
.T rr � T 00 /C

2

r
.T ## � T rr / D 0: (6.41)

The simplest solutions are obtained if f�� D C2g�� , where g�� fulfills (6.17) while
C;�g.C / are defined by (6.16),(6.18). Since �g can be positive, negative, or zero,
there are the Schwarzschild, Schwarzschild-de Sitter, and Schwarzschild-AdS black
holes. Let us call them background black holes.

More general solutions are obtained by numerically integrating Eq. (6.41). It
turns out [33] that the equations for the three amplitudes�;Y;U comprise a closed
system. Its local solution near the horizon,

�2 D
X
n�1

an.r � rh/n; Y 2 D
X
n�1

bn.r � rh/n; U D urh C
X
n�1

cn.r � rh/n;

contains only one free parameter u D U.rh/=rh, which is the ratio of the horizon
radius measured by f�� to that measured by g�� . The horizon is common for both
metrics, in addition, its surface gravities and temperatures determined with respect
to both metrics are the same [47].

Choosing a value of u and integrating numerically the equations from r D rh
towards large r , the result is as follows [33]. If u D C where C is a root of the
algebraic equation (6.18), then the solution is one of the background black holes.
If u D C C ıu then one can expect the solution to be the background black hole
slightly deformed by a massive graviton ‘hair’ localized in the horizon vicinity. This
is indeed confirmed for the Schwarzschild-AdS type solutions (�g < 0), which can
support a short massive hair and show deviations from the pure Schwarzschild-AdS
in the horizon vicinity, but far away from the horizon the deviations tend to zero (see
Fig. 6.1). Therefore, there are asymptotically AdS hairy black holes in the theory.

Fig. 6.1 Hairy deformations
of the Schwarzschild-AdS
background, where
A0;N0;�0; Y0 correspond to
the undeformed solution
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Fig. 6.2 Hairy deformations
of the Schwarzschild
background
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However, the procedure goes differently for �g � 0. When one deforms the
Schwarzschild background by setting u D rh C ıu, then the solutions first stay
very close to Schwarzschild. However, at large r they deviate away and show a
completely different asymptotic behavior at infinity (Fig. 6.2), characterized by a
quasi-AdS g-metric and a compact f-metric [33]. Therefore, the only asymptotically
flat black hole one finds is the pure Schwarzschild, while its hairy deformations
loose the asymptotic flatness. Similarly, trying to deform the Schwarzschild-de
Sitter background produces a curvature singularity at a finite proper distance away
from the black hole horizon, hence the only asymptotically de Sitter black hole is
the pure Schwarzschild-de Sitter.

The conclusion is that there are hairy black holes in the theory, but they are not
asymptotically flat. The following argument helps to understand this. Let us require
the solution to be asymptotically flat. Then one should have at large r

� D 1 � A sin2 �

r
C B cos2 �

mrC 1
r

e�mr C : : : ;

U D r CB m2r2 CmrC 1
m2r2

e�mr C : : : ;

Y D 1 � A sin2 �

r
� B sin2 �

1C mr

r
e�mr C : : : ; (6.42)

where A;B are integration constants. Suppose that one wants to find black hole
solutions with this asymptotic behavior using the multiple shooting method. In
this method one tries to match the asymptotics (6.42) and (6.42) by integrating the
equations starting from the horizon towards large r , and at the same time starting
from infinity towards small r . The two solutions should match at some intermediate
point, which gives three matching conditions for �;Y;U . These conditions should
be fulfilled by adjusting the free parameters A;B; u in Eqs. (6.42),(6.42). Solutions
of this problem may exist at most for discrete sets of values of A;B; u, hence one
cannot vary continuously the horizon parameter u. Therefore, there could be no
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continuous, asymptotically flat hairy deformations of the Schwarzschild solution.
However, this does not exclude isolated solutions, and in fact they exist, but to find
them requires a good initial guess for A;B; u.

It is interesting to see what happens to the hairy black holes when one changes
the horizon radius rh. It turns out that in the rh ! 0 limit, where the black
hole disappears, its ‘hair’ survives and becomes a static ‘lump’ made of massive
field modes. Such lumps are described by globally regular solutions for which
the event horizon is replaced by a regular center at r D 0, while at infinity the
asymptotic behavior is the same as for the black holes [33]. None of the lumps are
asymptotically flat. Neither lumps no hairy black holes admit the dRGT limit, they
exist only in the bigravity theory.

It is worth mentioning in this context that there are asymptotically flat solutions
with a matter [33]. Such solutions describe regular stars, and for them one can
take limits where one of the two metrics becomes flat. Suppose that the f-sector
is empty, while the g-sector contains T Œm��� D diagŒ�.r/; P.r/; P.r/; P.r/� with
 D ?�.r? � r/, corresponding to a ‘star’ with a constant density ? and a
radius r?. Adding this source to the field equations (6.41) and assuming a regular
center at r D 0, one finds solutions for which both metrics approach Minkowski
metric at infinity according to (6.42). Introducing the mass functions Mg;Mf via
grr D �2 D 1 � 2Mg.r/=r and f rr D Y 2=U 02 D 1 � 2Mf .r/=r , one finds
that Mg;Mf rapidly increase inside the star, while outside they approach the same
asymptotic value Mg.1/ D Mf .1/ � sin2 � (see Fig. 6.3). For � D �=2 the
g-metric is coupled only to the matter and is described by the GR Schwarzschild
solution, Mg.r/ D ?r

3=6 for r < r? and Mg.r/ D ?r
3
?=6 � MADM for r > r?.

For � < �=2 the star mass MADM is partially screened by the negative graviton
energy. For � D 0 (dRGT theory) the f-metric becomes flat, so that Mf D 0, while
Mg asymptotically approaches zero and the star mass is totally screened, because
the massless graviton decouples and there could be no 1=r terms in the metric.

Fig. 6.3 Profiles of the
asymptotically flat star
solution sourced by a regular
matter distribution
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If the graviton mass is very small, then the m2T
�
� contribution to the equations

is small as compared to T Œm��� , and for this reason Mg rests approximately constant
for r? < r < rV � .MADM=m

2/1=3. This illustrates the Vainshtein mechanism
of recovery of General Relativity in a finite region [48]. This mechanism has also
been confirmed by the numerical analysis within the generic massive gravity theory
with the BD ghost [49, 50], and also in the dRGT theory [51]. The approximate
analytical solutions in the weak field limit were considered in [44,45,52] within the
dRGT theory and in [53] within the bigravity theory.

6.7 Black Hole Stability and New Hairy Black Holes

As discussed in Sect. 6.4, if the two metrics coincide, g�� D f�� , then the bigravity
theory reduces to the vacuum GR, hence one can choose the Schwarzschild metric
as a solution. This solution is known to be linearly stable in the GR context, but
one can wonder if it is stable also within the bigravity theory. Let us consider small
perturbations around this solution,

g�� D g.0/�� C ıg��; f�� D g.0/�� C ıf�� ; (6.43)

where g.0/�� is the Schwarzschild metric. If one sets ıg�� D ıf�� , then the GR
result will be recovered. However, the perturbations of the two metrics need not
be the same in general. Linearizing the bigravity field equations with respect to the
perturbations, it turns out that the linear combinations

h�� D cos� ıg�� C sin � ıf��; h.0/�� D cos � ıf�� � sin � ıg�� (6.44)

decouple from each other and can be identified with the massive and massless
gravitons, respectively. Equations for the massless graviton are the same as in GR,
while for the massive graviton one obtains [54]

.0/� h�� C 2
.0/

R�˛�ˇ h
˛ˇ D m2h��; (6.45)

.0/

r� h�� D 0; h�� D 0:
An interesting observation [54] is that these equations have exactly the same
structure as those describing perturbations of the black strings—Schwarzschild
black holes uplifted to five spacetime dimensions. At the same time, it is known that
the black strings are prone to the Gregory-Laflamme instability [55]. Specifically,
setting h�� D ei!tH��.r; #; '/; it turns out that Eq. (6.45) admit a bound state
solution with !2 < 0 in the spherically-symmetric sector, provided that [56]

mrh D black hole radius

graviton’s Compton length
< 0:86: (6.46)
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It follows that small black holes are unstable, since the frequency ! is imaginary
and so the perturbations grow in time [54]. The condition of smallness is not crucial,
since all usual black holes are small compared to the Hubble radius and so fulfill the
bound (6.46), so that all of them should be unstable. On the other hand, since the
frequency j!j / m, this instability is very mild, as it needs a Hubble time � 1=m
to develop. Therefore, even if real astrophysical black hole were described by the
bigravity theory, their instability would be largely irrelevant and they would actually
be stable for all practical purposes over a cosmologically long period of time.

A similar instability was found also for the Kerr black holes [56] and for the
Schwarzschild-de Sitter black holes with proportional metrics described in Sect. 6.4
[57]. Interestingly, it was found in the latter case that the instability disappears in
the partially massless limit, where the graviton mass is related to the cosmological
constant as m2 D 2�=3 [57].

As discussed in Sect. 6.5 above, the Schwarzschild-de Sitter solution in the
bigravity theory can exist also in a different version, for which the two metrics
are not simultaneously diagonal. The linear stability of this solution was studied
with respect to all possible perturbations, but only in the restricted case (6.33) [58],
and also in the generic case (6.34), but only with respect to spherically symmetric
perturbations [59]. In both cases the solution was found to be stable.

Getting back to the unstable Schwarzschild black holes, it turns out that their
instability can be used to find new black holes which support hair and which are
asymptotically flat. As was explained above, asymptotically flat solutions subject to
the boundary conditions (6.42),(6.42) may exist, but to find them requires to fine-
tune the parameters A;B; u in (6.42),(6.42), for which an additional information is
needed. Now, the existence of the black hole instability provides such an information
[35].

Indeed, Eq. (6.45) admit solutions with !2 < 0 only for mrh < 0:86, while
for mrh > 0:86 all solutions have !2 > 0. This means that for mrh � 0:86 there
is a zero mode: a static solution of (6.45) with ! D 0. This zero mode can be
viewed as approximating a new black hole solution which exists for mrh < 0:86

and which merges with the Schwarzschild solution for mrh � 0:86. Close to the
merging point the deviations of the new solution from the Schwarzschild are small
and can be described by the linear theory. Therefore, one can use the linear zero
mode to read-off the values of the parameters A;B; u in (6.42),(6.42), after which
one can iteratively decrease rh to obtain the ‘fully-fledged’ non-perturbative hairy
black holes. This was done in [35].

The conclusion is that there are asymptotically flat black holes with a massive
hair in the bigravity theory. However, it seems that their parameter mrh cannot be
too small (unless for c3 D �c4 D 2) [35], which means that these black holes
are cosmologically large, their size being comparable with the Hubble radius. Such
solutions are unlikely to be relevant.

All described above black holes have been obtained in the theory either without
a matter source or in the theory with an electromagnetic field. At the same time,
the perturbative analysis of [60] predicts that hairy black holes should generically
exist in the massive gravity theory coupled to a matter with a non-vanishing trace of
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the energy-momentum tensor. It would be very interesting to test this prediction by
fully non-perturbative calculations.

Concluding Remarks
Summarizing the above discussion, all possible static, spherically symmetric
black holes in the dRGT massive gravity theory are described by the
Schwarzschild-de Sitter metrics. They belong to the type studied in Sect. 6.5
and they are probably stable. One may wonder why one does not find
asymptotically flat black holes. However, our universe is actually in the de
Sitter phase, and the main motivation for considering theories with massive
gravitons is to describe this fact. Hence, it is not astonishing that the solutions
are not asymptotically flat.

One finds more solutions in the bigravity theory, as for example the hairy
black holes. However, these seem to be not very relevant, since they are
either asymptotically AdS, which contradicts the observations, or they are
too large. There are also asymptotically flat or asymptotically de Sitter black
hole solutions, but they are unstable. However, they can describe astrophysical
black holes, since the instability takes cosmologically long times to develop.
One can also wonder what these black holes decay to, and one possibility is
that their instability actually implies that there is a slow accretion of massive
graviton modes to the horizon [61]. If this is true, then the black holes should
be almost exactly Kerr (Kerr-de Sitter), apart from small corrections in the
near-horizon region where the accretion takes place.

Some aspects of the graviton mass can be captured within a simplified
description in the context of the Galileon theory [62]. This is essentially the
General Relativity coupled to a self-interacting scalar field that mimics the
scalar polarization mode of the massive graviton. It turns out that black holes
in these theory are described by the GR metrics [63], and a no-hair theorem
can be proven in this case [64].

To recapitulate, even if the gravitons are indeed massive, this would be
hard to detect by observing black holes.
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Chapter 7
Chern–Simons-Like Gravity Theories

Eric A. Bergshoeff, Olaf Hohm, Wout Merbis, Alasdair J. Routh,
and Paul K. Townsend

Abstract A wide class of three-dimensional gravity models can be put into
“Chern–Simons-like” form. We perform a Hamiltonian analysis of the general
model and then specialise to Einstein-Cartan Gravity, General Massive Gravity, the
recently proposed Zwei-Dreibein Gravity and a further parity violating generalisa-
tion combining the latter two.

7.1 Introduction: CS-Like Gravity Theories

In three space-time dimensions (3D), General Relativity (GR) can be interpreted
as a Chern–Simons (CS) gauge theory of the 3D Poincaré, de Sitter (dS) or anti-
de Sitter (AdS) group, depending on the value of the cosmological constant [1, 2].
The action is the integral of a Lagrangian three-formL constructed from the wedge
products of Lorentz-vector valued one-form fields: the dreibein ea and the dualised
spin-connection !a. Using a notation in which the wedge product is implicit, and a
“mostly plus” metric signature convention, we have

L D �eaRa C �

6
"abceaebec ; (7.1)
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where Ra is the dualised Riemann 2-form:

Ra D d!a C 1

2
"abc!b!c : (7.2)

This action is manifestly local Lorentz invariant, in addition to its manifest invari-
ance under diffeomorphisms, which are on-shell equivalent to local translations. The
field equations are zero field strength conditions for the Poincaré or (A)dS group.

Strictly speaking, the CS gauge theory is equivalent to 3D GR only if one
assumes invertibility of the dreibein; this is what allows the Einstein field equations
to be written as zero field-strength conditions, and it is one way to see that 3D
GR has no local degrees of freedom, and hence no gravitons. However, there
are variants of 3D GR that do propagate gravitons. The simplest of these are 3D
“massive gravity” theories found by including certain higher-derivative terms in the
action.1 The best known example is Topologically Massive Gravity (TMG), which
includes the parity violating Lorentz–Chern–Simons term and leads to third-order
field equations that propagate a single spin-2 mode [3]. A more recent example is
New Massive Gravity (NMG) which includes certain curvature-squared terms; this
leads to parity-preserving fourth-order equations that propagate a parity-doublet
of massive spin-2 modes; combining TMG and NMG we get a parity violating
fourth-order General Massive Gravity (GMG) theory that propagates two massive
gravitons, but with different masses [4].

Although GMG is fourth order in derivatives, it is possible to introduce auxiliary
tensor fields to get a set of equivalent first-order equations [5]; in this formulation
the fields can all be taken to be Lorentz vector-valued 1-forms, and the action
takes a form that is “CS-like” in the sense that it is the integral of a Lagrangian
3-form defined without an explicit space-time metric (which appears only on the
assumption of an invertible dreibein). The general model of this type can be
constructed as follows [5]. We start from a collection of N Lorentz-vector valued
1-forms ar a D ar a� dx�, where r D 1; : : : ; N is a “flavour” index; the generic
Lagrangian 3-form constructible from these 1-form fields is

L D 1

2
grsa

r 
 das C 1

6
frsta

r 
 .as � at / ; (7.3)

where grs is a symmetric constant metric on the flavour space which we will require
to be invertible, so it can be used to raise and lower flavour indices, and the coupling
constants frst define a totally symmetric “flavour tensor”. We now use a 3D-vector
algebra notation for Lorentz vectors in which contractions with �ab and �abc are
represented by dots and crosses respectively. The 3-form (7.3) is a CS 3-form when
the constants

1It is possible, at least in some cases, to take a massless limit but since “spin” is not defined for
massless 3D particles, one cannot get a theory of “massless gravitons” this way, if by “graviton”
we mean a particle of spin-2.
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f ar
bs ct � �abcf

r
st & gar bs � �abgrs (7.4)

are, respectively, the structure constants of a Lie algebra, and a group invariant
symmetric tensor on this Lie algebra.2 For example, with N D 2 we may choose
aa1 D ea and aa2 D !a, and then a choice of the flavour metric and coupling
constants that ensures local Lorentz invariance will yield a CS 3-form equivalent,
up to field redefinitions, to (7.1). For N > 2, we will continue to suppose that
aa1 D ea and aa2 D !a, and that the flavour metric and coupling constants are such
that the action is local Lorentz invariant, but even with this restriction the generic
N > 2 model will be only CS-like. In particular TMG has a CS-like formulation
with N D 3 and both NMG and GMG have CS-like formulations with N D 4.
Since these models have local degrees of freedom they are strictly CS-like, and not
CS models.

The generic N D 4 CS-like gravity model also includes the recently analysed
Zwei-Dreibein Gravity (ZDG) [6]. This is a parity preserving massive gravity model
with the same local degrees of freedom as NMG (two propagating spin-2 modes of
equal mass in a maximally-symmetric vacuum background) but has advantages in
the context of the AdS/CFT correspondence since, in contrast to NMG, it leads to a
positive central charge for a possible dual CFT at the AdS boundary.

We focus here on the Hamiltonian formulation of CS-like gravity models for a
number of reasons. One is that the CS-like formulation allows us to discuss various
3D massive gravity models as special cases of a generic model, and this formulation
is well-adapted to a Hamiltonian analysis. Another is that there are some unusual
features of the Hamiltonian formulation of massive gravity models that are clarified
by the CS-like formalism. One great advantage of the Hamiltonian approach is that
it allows a determination of the number of local degrees of freedom independently
of a linearised approximation (which can give misleading results). In particular,
massive gravity models typically have an additional local degree of freedom, the
Boulware-Deser ghost [7]. It is known that GMG has no Boulware-Deser ghost,
and this is confirmed by its Hamiltonian analysis, but ZDG does have a Boulware-
Deser ghost for generic parameters [8], even though it is ghost-free in a linearised
approximation. Fortunately, this problem can be avoided by assuming invertibility of
a linear combination of the two dreibeine of ZDG. A special case of this assumption
imposes a restriction of the parameters; this point was made in an erratum to [6] and
here we present a detailed substantiation of it. We also present a parity violating CS-
like extension of ZDG, which we call “General Zwei-Dreibein Gravity” (GZDG),
and we show that it has the same number of local degrees of freedom as ZDG.

2There are CS gauge theories for which the Lagrangian 3-form is not of the form (7.3) because not
all of the generators of the Lie algebra of the gauge group are Lorentz vectors. If we wish the class
of CS gravity theories to be a subclass of the class of CS-like gravity theories, we should define the
latter by a larger class of 3-form Lagrangians, as in [5], but (7.3) will be sufficient for our purposes.
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7.2 Hamiltonian Analysis

It is straightforward to put the CS-like model defined by (7.3) into Hamiltonian
form. We perform the space-time split

ar a D ar a0 dtC ar ai dxi ; (7.5)

which leads to the Lagrangian density

L D �1
2
"ijgrsa

r
i 
 Pasj C ar0 
 �r ; (7.6)

where "ij D "0ij . The time components of the fields, ar a0 , become Lagrange
multipliers for the primary constraints �ar :

�ar D "ij

�
grs@ia

s a
j C

1

2
frst

�
ai
s � aj t

�a�
: (7.7)

The Hamiltonian density is just the sum of the primary constraints, each with a
Lagrange multiplier ar a0 ,

H D �1
2
"ijgrsa

r
i 
 @0asj �L D �a0r 
 �r : (7.8)

We must now work out the Poisson brackets of the primary constraints. Then,
following Dirac’s procedure [9], we must consider any secondary constraints. We
consider these two steps in turn.

7.2.1 Poisson Brackets and the Primary Constraints

The Lagrangian is first order in time derivatives, so the Poisson brackets of the
canonical variables can be determined by inverting the first term of (7.6); this gives

n
ari a.x/; a

s
j b.y/

o
P:B:
D "ijg

rs�abı
.2/.x � y/ : (7.9)

Using this result we may calculate the Poisson brackets of the primary constraint
functions. It will be convenient to first define the “smeared” functions �Œ��
associated to the constraints (7.7) by integrating them against a test function �ra.x/
as follows

�Œ�� D
Z
˙

d2x �ra.x/�
a
r .x/ ; (7.10)
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where ˙ is space-like hypersurface. In general, the functionals �Œ�� will not be
differentiable, but we can make them so by adding boundary terms. Varying (7.10)
with respect to the fields ai s gives

ı�Œ�� D
Z
˙

d2x �ra
ı�ar

ıas bi
ıai

s b C
Z
@˙

dx BŒ�; a; ıa� : (7.11)

A non-zero BŒ�; a; ıa� could lead to delta-function singularities in the brackets of
the constraint functions. To remove these, we can choose boundary conditions which
make B a total variation

Z
@˙

dx BŒ�; a; ıa� D �ıQŒ�; a� : (7.12)

We then work with the quantities

'Œ�� D �Œ��CQŒ�; a� ; (7.13)

which have well-defined variations, with no boundary terms. In our case, after
varying �Œ�� with respect to the fields ai s , we find

BŒ�; a; ıa� D
Z
@˙

dxi �ragrsıai
s a : (7.14)

The Poisson brackets of the constraint functions can now be computed using
Eq. (7.9). They are given by

f'.�/; '.�/gP:B: D '.Œ�; ��/C
Z
˙

d2x �ra�
s
b P

ab
rs

�
Z
@˙

dxi �r 
 �grs@i �
s C frst.ai

s � �t /	 ; (7.15)

where

Œ�; ��tc D frs
t �ab

c�
r
a�

s
b ; (7.16)

and

Pab
rs D f t

qŒr fs�pt�
ab�pq C 2f t rŒsfq�pt.V

ab/pq ; (7.17)

V
pq

ab D "ija
p
i aa

q

j b ; �pq D "ija
p
i 
 aqj : (7.18)

In general, adopting non-trivial boundary conditions may lead to a (centrally
extended) asymptotic symmetry algebra spanned by the first-class constraint func-
tions if the corresponding test functions �ra.x/ are the gauge parameters of boundary
condition preserving gauge transformations. Here we will focus on the bulk theory
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and assume that the test functions �ra.x/ do not give rise to boundary terms in (7.11)
and (7.15).

The consistency conditions guaranteeing time-independence of the primary
constraints are

d

dt
�bs D fH ; �bs gP:B: � �ar0 aPab

rs � 0 : (7.19)

This expression is equivalent to a set of “integrability conditions” which can be
derived from the equations of motion. The field equations of (7.3) are

grsda
s a C 1

2
frst.a

s � at /a D 0 : (7.20)

Taking the exterior derivative of this equation and using d2 D 0, we get the
conditions

f t
qŒrfs�pta

r aap 
 aq D 0 : (7.21)

Using the space-time decomposition (7.5) we have

0 D f t
qŒrfs�pta

r bap 
 aq D ar0aPab
rs ; (7.22)

the right hand side being exactly what is required to vanish for time-independence
of the primary constraints. These conditions are 3-form equations in which each
3-form necessarily contains a Lagrange multiplier one-form factor, so they could
imply that some linear combinations of the Lagrange multipliers is zero.

If the matrix Pab
rs vanishes identically then all primary constraints are first-class

and there is no constraint on any Lagrange multiplier. In this case the model is
actually a Chern–Simons theory, that of the Lie algebra with structure constants
�abcf

r
st. In general, however, Pab

rs will not vanish and rank.P/ will be non-
zero. We can pick a basis of constraint functions such that 3N � rank.P/ have
zero Poisson bracket with all constraints, while the remaining rank.P/ constraint
functions have non-zero Poisson brackets amongst themselves. At this point, it
might appear that the Lagrange multipliers for the latter set of constraints will be
set to zero by the conditions (7.22). However, when one of the fields is a dreibein,
this may involve setting e0a D 0. This is not acceptable for a theory of gravity,
as the dreibein must be invertible! When specifying a model, we must therefore be
clear whether we are assuming invertibility of any fields as it affects the Hamiltonian
analysis. In general, if we require invertibility of any one-form field then we may
need to impose further, secondary, constraints.

In other words, the consistency of the primary constraints is equivalent to
satisfying the integrability conditions (7.22). If some one-form is invertible, then
some integrability condition may reduce to a two-form constraint on the canonical
variables, which we must add as a secondary constraint in our theory. We now turn
to an investigation of these secondary constraints.
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7.2.2 Secondary Constraints

To be precise, consider for fixed s the expression f t
qŒr fs�pta

r a. If the sum over r
is non-zero for only one value of r , say ara D ha, and ha is invertible, then the
integrability conditions (7.21) imply that

f t
qŒr fs�pta

p 
 aq D 0 : (7.23)

In particular, taking the space-space part of this two-form, we find

"ijf t
qŒrfs�pta

p
i 
 aqj D 0 ; (7.24)

which depends only on the canonical variables and is therefore a new, secondary,
constraint. One invertible field may lead to several constraints if the above equation
holds for multiple values of s. The secondary constraints arising in this way3 are
therefore the inequivalent components of the field space vector  s D f t

qŒr fs�pt�
pq.

Let M be the number of these secondary constraints, and let us write them as

 I D fI;pq�pq ; I D 1; : : : ;M : (7.25)

We now have a total of 3N CM constraints.
According to Dirac, after finding the secondary constraints we should add them

to the Hamiltonian with new Lagrange multipliers [9]. However, in general this can
change the field equations. To see why let us suppose that we have a phase-space
action I Œz� for some phase space coordinates z, and that the equations of motion
imply the constraint�.z/ D 0. If we add this constraint to the action with a Lagrange
multiplier 	 then we get a new action for which the equations of motion are

ıI

ız
D 	@�

@z
; �.z/ D 0 : (7.26)

Any solution of the original equations of motions, together with 	 D 0, solves these
equations, but there may be more solutions for which 	 ¤ 0. This is precisely what
happens for NMG and GMG (although not for TMG) [5]; the field equations of these
models lead to a (field-dependent) cubic equation for one of the secondary constraint
Lagrange multipliers, leading to two possible non-zero solutions for this Lagrange
multiplier.4 In this case, Dirac’s procedure would appear to lead us to a Hamiltonian

3Here we should issue a warning: a linear combination of invertible one-forms is not in general
invertible, so if f t

qŒr fs�pta
r a sums over multiple values of r with each corresponding one-form

invertible, this does not in general imply a new constraint.
4This problem appears to be distinct from the problem of whether the “Dirac conjecture” is
satisfied, since that concerns the values of Lagrange multipliers of first-class constraints. It may
be related to the recently discussed “sectors” issue [10].
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formulation of a theory that is more general than the one we started with (in that its
solution space is larger). Perhaps more seriously, adding the secondary constraints
to the Hamiltonian will generally lead to a violation of symmetries of the original
model.

Because of this problem, we will omit the secondary constraints from the total
Hamiltonian. This omission could lead to difficulties. The first-class constraints
are found by consideration of the matrix of Poisson brackets of all constraints,
so it could happen that some are linear combinations of primary with secondary
constraints. We would then have a situation in which not all first-class constraints are
imposed by Lagrange multipliers in the (now restricted) total Hamiltonian, and this
would appear to lead to inconsistencies. Fortunately, this problem does not actually
arise for any of the CS-like gravity models that we shall consider, as they satisfy
conditions that we now spell out.

The Poisson brackets of the primary with the secondary constraint functions are

f�Œ��;  I gP:B: D "ij
h
fI;rp@i .�

r / 
 apj C frs
tfI;pt�

r 

�
asi � apj

�i
; (7.27)

and the Poisson brackets of the secondary constraint functions amongst themselves
are

f I ;  J gP:B: D 4fI;pqfJ;rs�
prgqs : (7.28)

We now make the following two assumptions, which hold for all our examples:

• We assume that all Poisson brackets of secondary constraints with other sec-
ondary constraints vanish on the full constraint surface. It then follows that the
total matrix of Poisson brackets of all 3N C M constraint functions takes the
form

P D
�

P 0 �f�; gT
f�; g 0

�
; (7.29)

where P 0 is the matrix of Poisson brackets of the 3N primary constraints
evaluated on the new constraint surface defined by all 3N CM constraints.

• We assume that inclusion of the secondary constraints in the set of all constraints
does not lead to new first-class constraints. This means that the secondary
constraints must all be second-class, and any linear combination of secondary
constraints and the rank.P 0/ primary constraints with non-vanishing Poisson
brackets on the full constraint surface must be second-class.

The rank of P, as given in (7.29), is the number of its linearly independent
columns. By the second assumption, this is M plus the number of linearly
independent columns of
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�
P 0
f�; g

�
: (7.30)

The number of linearly independent columns of this matrix, as for any other matrix,
is the same as the number of linearly independent rows, which by the second
assumption is rank.P 0/CM . The rank of P, and therefore the number of second-
class constraints, is then rank.P 0/C 2M .

In principle one should now check for tertiary constraints. However, in this
procedure the invertibility of certain fields will be guaranteed by the secondary
constraints. The consistency of the primary constraints under time evolution can be
guaranteed by fixing rank(P 0) of the Lagrange multipliers. The consistency of the
secondary constraints under time evolution, ar0af�ar ;  I g � 0, can be guaranteed,
under the second assumption, by fixing a further M of the Lagrange multipliers.
The fact that these M multipliers are distinct from the rank(P 0) multiplier fixed
before follows from the second assumption. The remaining consistency condition,
f ; g � 0, is guaranteed by the first assumption.

We therefore have 3N - rank(P 0) - M undetermined Lagrange multipliers,
corresponding to the 3N - rank(P 0) - M first-class constraints. The remaining
rank(P 0) C 2M constraints are second-class. The dimension of the physical phase
space per space point is the number of canonical variables arai , minus twice the
number of first-class constraints, minus the number of second-class constraints, or

D D 6N � 2 � �3N � rank.P 0/�M �� 1 � �rank.P 0/C 2M � D rank.P 0/ :
(7.31)

We will now apply this procedure to determine the number of local degrees of
freedom of various 3D gravity models with a CS-like formulation.

7.3 Specific Examples

We will now derive the Hamiltonian form of a number of three-dimensional CS-like
gravity models of increasing complexity following the above general procedure.

7.3.1 Einstein-Cartan Gravity

To illustrate our formalism we will start by using it to analyse 3D General Relativity
with a cosmological constant �, in its first-order Einstein-Cartan form. There are
two flavours of one-forms: the dreibein, ae a D ea, and the dualised spin-connection
a! a D !a D 1

2
"abc!bc. The Lagrangian 3-form is that of (7.1). This takes the

general form of (7.3), with the flavour index r; s; t; : : : D !; e. The first step is to
read off grs and frst, and for later convenience we also determine the components of
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the inverse metric grs and the structure constants with one index raised, f r
st. The

non-zero components of these quantities are:

g!e D �1 ; feee D � ; fe!! D �1 ; (7.32)

g!e D �1 ; f !
ee D �� ; f !

!! D 1 ; f e
e! D 1 :

These constants define a Chern–Simons 3-form, as mentioned in the introduction;
the structure constants are "abcf

r
st. This algebra is spanned by the Hamiltonian con-

straint functions, which are all first-class. In three-dimensions, General Relativity,
like any Chern–Simons theory, has no local degrees of freedom.

To see how the details work in our general formalism, we can work out the
matrix (7.17) and find that it vanishes. Then, by equation (7.31) the dimension of
the physical phase space is

D D 12� 2 � 6 D 0 ; (7.33)

as expected. Using (7.15) we can also verify that

f�a!; �b!gP:B: D �ab
c �

c
! ; f�ae ; �b!gP:B: D �ab

c �
c
e ; f�ae ; �be gP:B: D ���ab

c �
c
! ;

which is the SO.2; 2/ algebra for � < 0, SO.3; 1/ for � > 0 and ISO.2; 1/ for
� D 0, as expected.

7.3.2 General Massive Gravity

General Relativity was a very simple application of our general formalism; as a
Chern–Simons theory the Poisson brackets of the constraint functions formed a
closed algebra, so it did not require our full analysis. We will now turn to a more
complicated example, General Massive Gravity (GMG). This theory does have local
degrees of freedom; it propagates two massive spin-2 modes at the linear level. It
contains two well known theories of 3D massive gravity as limits: Topologically
Massive Gravity (TMG) [3] and New Massive Gravity (NMG) [4].

We can write the Lagrangian 3-form of GMG in the general form (7.3). There
are four flavours of one-form, ar a D .!a; ha; ea; f a/, the dualised spin-connection
and dreibein and two extra fields ha and f a, and the Lagrangian 3-form is

LGMG D� �eaRa C �0

6
�abceaebec C haT a C 1

2�



!ad!

a C 1

3
�abc!a!b!c

�

� 1

m2



faR

a C 1

2
�abceafbfc

�
;

(7.34)
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where we recall that Ra is the dualised Riemann 2-form. The flavour-space metric
grs and the structure constants f r

st can again be read off:

g!e D �� ; geh D 1 ; gf! D � 1

m2
; g!! D 1

�
;

fe!! D �� ; feh! D 1 ; feff D � 1

m2
; f!!! D 1

�
; (7.35)

feee D �0 ; f!!f D � 1

m2
:

The next step is to work out the integrability conditions (7.21). We find three
inequivalent 3-form relations,

eae 
 f D 0 ; f a

�
1

�
e 
 f C h 
 e

�
� hae 
 f D 0 ; ea

�
1

�
e 
 f C h 
 e

�
D 0 :

(7.36)

We will demand that the dreibein, ea, is invertible. Following our general analysis,
we find the two secondary constraints

 1 D �eh D 0 ;  2 D �ef D 0 : (7.37)

Next, we compute the matrix Pab
rs as defined in (7.17). All the �pq terms drop out

because of the secondary constraints, and in the basis .!; h; e; f / we get

.P 0
ab/rs D

0
BBB@

0 0 0 0

0 0 V
ef

ab �V ee
ab

0 V
fe

ab �2V hf
Œab� C 1

�
V

ff
ab V

he
ab � 1

�
V

fe
ab

0 �V ee
ab V eh

ab � 1
�
V

ef
ab

1
�
V ee

ab

1
CCCA : (7.38)

We must now determine the rank of this matrix at an arbitrary point in space-time.
A Mathematica calculation shows that the rank of P 0 is 4. To complete the analysis
and verify if the two assumptions stated in Sect. 7.2.2 are met, we need the Poisson
brackets of the secondary constraint functions  I (I D 1; 2) with themselves and
with the primary constraint functions. The Poisson bracket f 1; 2g is zero on the
constraint surface, which verifies the first assumption, and the Poisson brackets of
 I with the primary constraint functions are

f�Œ��;  1gP:B: D �ij



@i �

h 
 ej � �h 
 .!i � ej /� @i �e 
 hj C �e 
 .!i � hj /

C
�
��e C 1

m2
�f
�

 .ei � fj /C

�
��f C�0�

e
�
.ei � ej /

�
;

(7.39)
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f�Œ��;  2gP:B: D �ij



@i �

f 
 ej � �f 
 .!i � ej /� @i �e 
 fj C �e 
 .!i � fj /

C
�
m2�h � m

2

�
�f
�
.ei � ej /Cm2�e 


�
ei �

�
hj � 1

�
fj

���
:

(7.40)

The full matrix of Poisson brackets is a 14 � 14 matrix P given by

P D
0
@ P 0 v1 v2
�vT1 0 0

�vT2 0 0

1
A ; (7.41)

where the vI , .I D 1; 2/, are column vectors with components

vI D

0
BBB@
f�a!;  I gP:B:
f�ah;  I gP:B:
f�ae ;  I gP:B:
f�af ;  I gP:B:

1
CCCA : (7.42)

These brackets can be read off from Eqs. (7.39) and (7.40). The vectors (7.42) are
linearly independent from each other and from the columns of P 0, which verifies
the second assumption of Sect. 7.2.2 and the rank of P is increased by 4. The full
.14 � 14/ matrix therefore has rank 8, so eight constraints are second-class and the
remaining six are first-class. By Eq. (7.31), the dimension of the physical phase
space per space point is

D D 24� 8 � 2 � 6 D 4 : (7.43)

This means there are two local degrees of freedom, and we conclude that the non-
linear theory has the same degrees of freedom as the linearised theory, two massive
states of helicity˙2.

7.3.3 Zwei-Dreibein Gravity

We now turn our attention to another theory of massive 3D gravity, the recently
proposed Zwei-Dreibein Gravity (ZDG) [6]. This is a theory of two interacting
dreibeine, ea1 and ea2 , each with a corresponding spin-connection, !1a and !2a. It
also has a Lagrangian 3-form of our general CS-like form (7.3). Like NMG, ZDG
preserves parity and has two massive spin-2 degrees of freedom when linearised
about a maximally-symmetric vacuum background, but this does not exclude the
possibility of additional local degrees of freedom appearing in other backgrounds.
In fact, it was shown by Bañados et al. [8] that the generic ZDG model does have an
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additional local degree of freedom, the Boulware-Deser ghost. We will see why this
is so, and also how it can be removed by assuming invertibility of a special linear
combination of the two dreibein.

The Lagrangian 3-form is

LZDG D �MP


�e1 aR1

a C e2aR2a C m2

6
�abc .˛1e1ae1 be1 c C ˛2e2 ae2be2 c/

�L12.e1; e2/
�
; (7.44)

where R1a and R2a are the dualised Riemann 2-forms constructed from !1
a and

!2
a respectively, and the interaction Lagrangian 3-form L12 is given by

L12.e1; e2/ D 1

2
m2�abc .ˇ1e1ae1 be2 c C ˇ2e1ae2be2 c/ : (7.45)

Here � D ˙1 is a sign parameter, ˛1 and ˛2 are two dimensionless cosmological
parameters and ˇ1 and ˇ2 are two dimensionless coupling constants. The parameter
m2 is a redundant, but convenient, dimensionful parameter. For now these parame-
ters are arbitrary, but we will soon see that some restrictions are necessary.

From (7.44) we can read off the components of grs and frst. We will ignore the
overall factorMP to simplify the analysis; after this step they become

ge1!1 D g!1e1 D �� ; ge2!2 D g!2e2 D �1 ;
fe1!1!1 D �� ; fe2!2!2 D �1 ; (7.46)

fe1e1e2 D m2ˇ1 ; fe1e2e2 D m2ˇ2 ;

fe1e1e1 D �m2˛1 ; fe2e2e2 D �m2˛2 :

We also work out the inverse metric grs and the structure constants f r
st,

ge1!1 D g!1e1 D � 1
�
; ge2!2 D g!2e2 D �1 ;

f !1
!1!1 D f e1

!1e1 D 1 ; f !2!2!2 D f e2
!2e2 D 1 ; (7.47)

f !1
e1e2 D f !1

e2e1 D �
m2ˇ1

�
; f !1

e2e2 D �
m2ˇ2

�
;

f !1
e1e1 D

m2

�
˛1 ; f

!2
e2e2 D m2˛2 ;

f !2
e1e2 D f !2

e2e1 D �m2ˇ2 ; f
!2
e1e1 D �m2ˇ1 :

Equipped with these expressions, we can evaluate the 12 � 12 matrix of Poisson
brackets (7.15), in the flavour basis .!1; !2; e1; e2/
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.Pab/rs D m2�ab

0
BBBB@

0 0 �ˇ1�e1e2 �ˇ2�e1e2

0 0 ˇ1�
e1e2 ˇ2�

e1e2

ˇ1�
e1e2 �ˇ1�e1e2 0 �ˇ1�!�e1 � ˇ2�!�e2

ˇ2�
e1e2 �ˇ2�e1e2 ˇ1�

!�e1 C ˇ2�!�e2 0

1
CCCCA

Cm2ˇ1

0
BBBB@

0 0 V e1e2
ab �V e1e1

ab

0 0 �V e1e2
ab V

e1e1
ab

V
e2e1

ab �V e2e1
ab �.V !1e2

Œab� � V !2e2
Œab� / .V

!1e1
ab � V !2e1

ab /

�V e1e1
ab V

e1e1
ab .V

e1!1
ab � V e1!2

ab / 0

1
CCCCA (7.48)

Cm2ˇ2

0
BBBB@

0 0 V e2e2
ab �V e2e1

ab

0 0 �V e2e2
ab V

e2e1
ab

V
e2e2

ab �V e2e2
ab 0 �.V e2!1

ab � V e2!2
ab /

�V e1e2
ab V

e1e2
ab �.V !1e2

ab � V !2e2
ab / .V

!1e1
Œab� � V !2e1

Œab� /

1
CCCCA :

Where !� � !1 � !2. We determine the rank of this matrix as before using
Mathematica, and find it to be 6. This means that there are 12 � 6 D 6 gauge
symmetries in the theory.

To find the secondary constraints we must study the integrability conditions
(7.21). There are three independent equations

.ˇ1e1
a C ˇ2e2a/e1 
 e2 D 0 ; (7.49)

e2
a!� 
 .ˇ1e1 C ˇ2e2/� ˇ1!�ae1 
 e2 D 0 ; (7.50)

e1
a!� 
 .ˇ1e1 C ˇ2e2/C ˇ2!�ae1 
 e2 D 0 : (7.51)

Assuming invertibility of both dreibeine, ea1 and ea2 , is not sufficient to generate a
secondary constraint; from (7.49) we need that .ˇ1e1a C ˇ2e2a/ is invertible. This
does not follow from the invertibility of the two separate dreibeine. Without any
secondary constraints, the dimension of the physical phase space, using Eq. (7.31),
is 6. This corresponds to 3 local degrees of freedom, one massive graviton and the
other presumably a scalar ghost.

We are interested in theories of massive gravity without ghosts, so we must
restrict our general model to ensure secondary constraints. By analysing (7.49)-
(7.51) we see that to derive two secondary constraints, we should assume the
invertibility of the linear combination ˇ1e1

a C ˇ2e2
a. A special case of this

assumption, where the ZDG parameter space is restricted to ˇ1ˇ2 D 0, but one
of the ˇi is non-zero and the corresponding dreibein is assumed to be invertible,
was considered in an erratum to [6]. We will first analyse this special case in more
detail and then move to the generic case.
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7.3.3.1 The Case ˇ1ˇ2 D 0

In the case that we set to zero one of the two parameters ˇi we may choose, without
loss of generality, to set

ˇ2 D 0 : (7.52)

In this case the invertibility of e1a alone implies the two secondary constraints.

 1 D �e1e2 D 0 ;  2 D �!�e1 D 0 : (7.53)

These constraints and parameter choices cause the first and last matrices in
Eq. (7.48) to vanish. The remaining matrix P 0 has rank 4.

The secondary constraints (7.53) are in involution with each other, and their
brackets with the primary constraint functions are given by

f�Œ��;  1gP:B: D "ij



@i �

e1 
 e2j � �e1 
 !1 i � e2j � @i �e2 
 e1 j C �e2 
 !2 i � e1 j

� .�!1 � �!2 / 
 e1 i � e2 j
�
; (7.54)

and

f�Œ��;  2gP:B: D"ij



.@i �

!1 � @i �!2 / 
 e1j � .�!1 � �!2 / 
 .!2 i � e1j / � @i �e1 
 !� j

C �e1 
 .!1 i � !� j /Cm2 .�ˇ1�
e1 C ˛2�e2 / 
 .e1 i � e2j /

(7.55)

�m2 ..�˛1 C ˇ1/�e1 � �ˇ1�e2 / 
 .e1 i � e1 j /
�
:

The full matrix of Poisson brackets is again a 14 � 14 matrix P given by (7.41),
where the vI with I D 1; 2 are now

vI D

0
BB@
f�a!1;  I gP:B:
f�a!2;  I gP:B:
f�ae1 ;  I gP:B:
f�ae2 ;  I gP:B:

1
CCA : (7.56)

These brackets can be read off from equations (7.54) and (7.55). The vectors (7.56)
are linearly independent from each other and with the columns of P, so this increases
the rank of P by 4. The total number of second-class constraints is 8, leaving 6 first-
class constraints. Using (7.31) we find that for general values of the parameters
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˛1, ˛2 and ˇ1 the dimension of the physical phase space per space point is 4. This
corresponds to the 2 local degrees of freedom of a massive graviton.

7.3.3.2 The Case of Invertible ˇ1e1
a C ˇ2e2

a

The more general case is to assume invertibility of the linear combination of the two
dreibeine, ˇ1e1a C ˇ2e2a. In this case, to keep track of the invertible field, we make
a field redefinition in the original Lagrangian (7.44). We define, for ˇ1 C �ˇ2 ¤ 0,

ea D 2

ˇ1 C �ˇ2 .ˇ1e1
a C ˇ2e2a/ ; f a D �e1a � e2a : (7.57)

For convenience we will work with the sum and difference of the spin connections5

!a D 1

2
.!1

a C !2a/ ; ha D 1

2
.!1

a � !2a/ : (7.58)

In terms of these new fields, the ZDG Lagrangian 3-form is

L D�MP


�eaR

a.!/C cfaRa.!/C faDha C 1

2
�abc.�e

a C cf a/hbhc

Cm2�abc

�
a1

6
eaebec � b1

2
eaebf c � b2

2
eaf bf c (7.59)

C .c
2 � 1/b1 � 2 c �b2

6
f af bf c

��
;

where D is the covariant derivative with respect to !. The new dimensionless
constants .a1; b1; b2; c/ are given in terms of the old .˛I ; ˇI / parameters as follows

a1 D 1

8
.˛1 � 3�ˇ1 � 3ˇ2 C �˛2/ ; b1 D ˛2ˇ1 C ˇ22 � ˇ21 � ˛1ˇ2

4.ˇ1 C �ˇ2/ ;

(7.60)

b2 D� ˛1ˇ
2
2 C �ˇ1ˇ22 C ˇ21ˇ2 C �˛2ˇ21

2.ˇ1 C �ˇ2/2 ; c D �ˇ2 � ˇ1
�ˇ2 C ˇ1 :

By construction, this theory has two secondary constraints for invertible ea. Indeed,
when we calculate the integrability conditions (7.21) for this theory we find the three
equations

5Note that the sum of the two connections also transforms as a connection, while the difference
transforms as a tensor under the diagonal gauge symmetries.
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1

2
.ˇ1 C �ˇ2/eaf 
 e D 0 ; 1

2
.ˇ1 C �ˇ2/eah 
 e D 0 ; (7.61)

and

1

2
.ˇ1 C �ˇ2/ .haf 
 e C f ah 
 e/ D 0 : (7.62)

From (7.61) we can derive two secondary constraints, since we assumed that ea was
invertible and that ˇ1 C �ˇ2 ¤ 0. The secondary constraints are

 1 D �fe D 0 ;  2 D �he D 0 : (7.63)

After imposing these constraints, the matrix of Poisson brackets in the basis
.!; h; f; e/ reduces to

.P 0
ab/rs D 1

2
m2.ˇ1 C �ˇ2/

�
0 0

0 Q

�
; (7.64)

where

Q D

0
B@

0 V ee
ab �V ef

ab

V ee
ab 0 �V eh

ab

�V fe
ab �V he

ab V
hf
Œab�

1
CA : (7.65)

Using the same techniques as previously, we find that this matrix has rank 4.
The secondary constraints are again in involution with themselves, and their

brackets with the primary constraint functions are given by

f�Œ��;  1gP:B: D "ij



@i �

f 
 ej � �f 
 !i � ej � @i �e 
 fj C �e 
 !i � fj

� ���e C c �f � 
 ei � hj � �c �e C �.c2 � 1/�f � 
 fi � hj
(7.66)

� �h 
 ��ei � ej C 2c ei � fj C �.c2 � 1/fi � fj �
�
;

and

f�Œ��;  2gP:B: D "ij



@i �

h 
 ej � �h 
 !i � ej � @i �e 
 hj C �e 
 !i � hj

Cm2
�
.c �a1 C b1/�e � .c �b1 � b2/�f

� 
 ei � ej (7.67)

�m2
�
.c �b1 � b2/�e C ..c2 � 1/b1 � c �b2/�f

� 
 ei � fj
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� .c �eC �.c2 � 1/�f / 
 hi �hj � �h

�
c ei � hj C �.c2 � 1/fi �hj

� �
:

For generic values of the parameters these constraints increase the rank of the
total matrix of Poisson brackets, P, by 4, leading to a 14 � 14 matrix of rank
8. This implies that there are eight second-class constraints and six first-class
constraints, leading to two degrees of freedom, those of two massive spin-2 modes
in 3 dimensions.

To summarize, demanding the presence of secondary constraints in ZDG to
remove unwanted degrees of freedom forces us to make an additional assumption
about the theory. We must assume invertibility of a linear combination of the two
dreibeine. With an additional restriction on the parameter space of the theory, the
invertibility of one of the original dreibein is sufficient to remove the Boulware-
Deser ghost. Note that only one dreibeine (or one combination of the two dreibeine)
need be assumed invertible. This suggests that we identify its square as the
“physical” metric with which distances are measured. In the case where ˇ1ˇ2 D 0,
this suggestion is supported by the fact that the second dreibein may be solved for in
terms of the invertible dreibein and its derivatives, leading to an equation of motion
for a single dreibein containing an infinite sum of higher derivative contributions
[11]. It would be interesting to investigate whether this is also possible in the generic
case.

7.3.4 General Zwei-Dreibein Gravity

It is natural to look for a parity violating generalisation of ZDG, just as GMG is
a parity violating version of NMG. To this end we add to the ghost-free, ˇ2 D 0,
ZDG Lagrangian 3-form (7.44) a Lorentz–Chern–Simons (LCS) term for the spin-
connection !1a.6

LGZDG D LZDG.ˇ2 D 0/C MP

2�
!1a

�
d!1

a C 1

3
�abc!1b!1 c

�
: (7.68)

The introduction of the LCS term for !1a introduces non-zero torsion for e1a. One
might consider adding a torsion constraint for e1a, enforced by a Lagrange multiplier
field ha, but this introduces new degrees of freedom [6]. In any case, the equations
of motion for General ZDG are such that the torsion constraint is not needed in
order to solve for the spin-connections, and there exists a scaling limit similar to

6It is also possible to include a LCS term for !2a , in this case the expressions presented in this
subsection are only slightly modified and lead to the same conclusion.
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the NMG-limit presented in [6] where the General ZDG Lagrangian reduces to the
GMG Lagrangian (7.34).

From the point of view of our general formalism, the addition of the LCS term
adds the following non-zero components to grs and frst

g!1!1 D
1

�
; f!1!1!1 D

1

�
: (7.69)

The integrability conditions now read

e1
ae1 
 e2 D 0 ; (7.70)

e1
a

�
!� 
 e1 C ˇ1m

2

�
e1 
 e2

�
D 0 ; (7.71)

e2
a!� 
 e1 C

�
ˇ1m

2

�
e2
a � !�a

�
e1 
 e2 D 0 : (7.72)

Invertibility of e1a implies the same secondary constraints as in Eq. (7.53), and the
counting of degrees of freedom proceeds analogously. After a linear redefinition of
the constraints to �!0 D �!1 C �!2 , the matrix of Poisson brackets reduces to

.P 0
ab/rs D m2ˇ1

�
0 0

0 Q

�
; (7.73)

where

Q D

0
B@

0 �V e1e2
ab V

e1e1
ab

�V e2e1
ab �.V !1e2

Œab� � V !2e2
Œab� /C ˇ1m

2

�
V
e2e2

ab .V
!1e1

ab � V !2e1
ab / � ˇ1m

2

�
V
e2e1

ab

V
e1e1

ab .V
e1!1

ab � V e1!2
ab / � ˇ1m

2

�
V
e1e2

ab
ˇ1m

2

�
V
e1e1

ab

1
CA :

(7.74)

We find that this matrix has rank 4. The Poisson brackets of the secondary
constraints with the primary ones are now:

f�Œ��;  1gP:B: D "ij



@i �

e1 
 e2j � �e1 
 !1 i � e2 j � @i �e2 
 e1j C �e2 
 !2 i � e1j

�
�
�!1 � �!2 C ˛1m

2

�
�e1 � m

2ˇ1

�
�e2
�

 e1 i � e2 j (7.75)

C ˇ1m
2

�
�e1 
 e2 i � e2 j

�
;



200 E.A. Bergshoeff et al.

and

f�Œ��;  2gP:B: D"ij



.@i �

!1 � @i �!2 / 
 e1 j � .�!1 � �!2 / 
 .!2 i � e1 j / � @i �e1 
 !� j

C �e1 
 .!1 i � !� j /Cm2 .�ˇ1�
e1 C ˛2�e2 / 
 .e1 i � e2 j /

(7.76)

�m2 ..�˛1 C ˇ1/�e1 � �ˇ1�e2 / 
 .e1 i � e1 j /

Cm2

�
˛1

�
�e1 � ˇ1

�
�e2
�

 .e1 i � !� j /�m2ˇ1

�
�e1 
 .e2 i � !� j /

�
:

Again, the secondary constraints are in involution, and the new columns are linearly
independent from each other and the original columns. The usual analysis shows that
there are 8 second-class constraints and 6 first-class constraints. The total dimension
of the physical phase space remains 4, and so the model has the same number of
local degrees of freedom as GMG.

Conclusions
It is a remarkable fact that many of the 3D “massive gravity” models that
have been found and analysed in recent years have a CS-like formulation in
which the action is an integral over a Lagrangian 3-form constructed from
wedge products of 1-forms that include an invertible dreibein. One example
not considered here is Topologically Massive Supergravity [12].

Many of these CS-like models have an alternative formulation as a higher-
derivative extension of 3D General Relativity, and it is certainly not the case
that all such higher-derivative extensions can be recast as CS-like models.
It appears that the unitary (ghost-free) 3D massive models are also special
in this respect. Whatever the reason may be for this, it is fortunate because
the CS-like formalism is well-adapted to a Hamiltonian analysis, which we
have reviewed, and refined, extending the results of [5] for General Massive
Gravity (GMG) to include the recently proposed Zwei-Dreibein Gravity
(ZDG) [6].

This Hamiltonian analysis leads to a simple determination of the number of
local degrees of freedom, independent of any linearisation about a particular
background. This allows one to establish that a class of 3D massive gravity
models is free of the Boulware-Deser ghost that typically afflicts massive
gravity models [7]. This class includes ZDG, provided a linear combination of
the dreibeine is assumed to be invertible. Conversely, the CS-like formulation
of these models can be used as a starting point to find higher-derivative
extensions of New Massive Gravity which are guaranteed to be free of scalar
ghosts [13].

(continued)
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We have also discussed a parity violating extension of ZDG; it has some
similarities to GMG (and has a limit to GMG for a certain range of its
parameters) so it could be called “General Zwei-Dreibein Gravity” (GZDG).
We have shown that it has exactly the same number of local degrees of
freedom as GMG. We know that ZDG propagates two spin-2 modes of
equal mass in a maximally symmetric vacuum, so it seems that GZDG will
propagate two spin-2 modes of different masses, like GMG. It would be
interesting to see whether there is some limit of the parameters of GZDG that
sends one mass to infinity keeping the other fixed, because we would then
have a model similar to TMG but possibly with better behaviour in relation to
the AdS/CFT correspondence.
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Chapter 8
Cosmological Applications of Massive Gravity

Andrew J. Tolley

Abstract Models of modified gravity in the infrared are especially appealing for
their late-time cosmology. We review different models before focusing on the
cosmology of massive gravity. We start by information derived from its decoupling
limit where a self-acceleration solution can be found but suffers from strong
coupling issues in the vector modes. This feature is carried through for most
FRW self-accelerating solutions in the full theory. We emphasize the role played
by inhomogeneous solutions which reduce to a self-accelerating FRW solution
on distances comparable to our current Universe but are inhomogeneous at larger
distances. We also give an overview of cosmological solutions in extensions of
massive gravity such as bi-gravity and quasi-dilaton massive gravity.

8.1 Introduction and Motivations

Most modifications of gravity change physics at high energies. Examples include
string theory, Kaluza–Klein theories etc. . . . In gravity, high energy means high
curvatures which means early times. Thus string theory/Kaluza–Klein modifications
and other UV modifications of gravity have little impact on late-time cosmology.
Ironically, it is late time cosmology that we least understand and particularly
Cosmic Acceleration. In this proceedings we explore the effects of IR (low-energy)
modifications of gravity on late-time cosmology.

We start by reviewing the Dvali–Gabadadze–Porrati (DGP) model and its
cosmology. While DGP is well-known for admitting a self-acceleration branch,
it is plagued by ghost which makes that solution unphysical. Nevertheless DGP
has played a profound role in our understanding of IR modifications of gravity.
While the “normal” branch (or ghost) of DGP does not self-accelerate it exhibits
important features which remain for any modification of gravity. We then review
the features behind degravitating/screening solutions and explore extensions of DGP
including massive gravity and Cascading gravity. The rest of these proceedings are
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then dedicated to the cosmology of massive gravity. Starting with its decoupling
limit we emphasize the existence of several key features, including self-acceleration
and strong-coupling. We then present a no-go for FRW solutions in the full spatially
flat massive gravity theory on flat spacetime and different resolutions to get round
this no-go theorem. We show how massive gravity with FRW reference metric is
never an observationally consistent resolution due to the “Higuchi” problem but
explain how bi-Gravity bypasses these issues. We then present the cosmology in the
quasi-dilaton. Finally we discuss Partially Massless (Bi)Gravity and show that such
a non-linear theory cannot exist.

8.1.1 DGP: The Quintessential IR Modification

8.1.1.1 Self-Acceleration

Imagine a brane in an infinite fifth dimension with a localized Einstein–Hilbert term
on the brane [38]

S D
Z

d4x
p�g4M

2
Pl

2
R4 C

Z
d4x

p�g � 4LM C
Z

d5x
p�g5M

3
5

2
R5; (8.1)

where the terms of the left are the most irrelevant and the ones that dominate in
the UV while to the right are the most relevant operators which dominate in the IR.
This means that at low energies we feel all five dimensions. As a result, the force of
gravity in at large distances (or low-energy) falls as r�3.

At high energies, the brane kinetic term dominates which forces gravity to behave
four-dimensional. At short distances (or high-energies), one recovers the standard
Newton’s square law for the force of gravity falling as r�2.

One of the main interests of DGP is that gravitons can condense to form a
condensate whose energy density sources self-acceleration [36]. This corresponds
to the self-accelerating solution of DGP that can be inferred from the Friedman
equation [36]

H2 �mH D 1

3M2
Pl

matter ; (8.2)

wherem DM3
5 =M

2
Pl. The two different signs correspond to the two embeddings of

the brane. In the ‘�’-branch, the Universe accelerates H � m even in the absence
of matter matter D 0. The ‘unfortunate’ news is that this branch also has a ghost
[7, 45, 63]. Furthermore the solution also sits at a strong coupling threshold which
makes the question of the quantum stability particularly interesting [65, 68].

A few years later, one of the motivations for Galileon models was to find self-
accelerating solutions without the Ghost issue [69]. Depending on the context,
Galileons may or may not be seen as scalar fields in their own right. They may
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arise as the brane-bedding mode of a probe brane in higher dimensions [24]. In
DGP, they arise a remnants of higher spin fields and this also happens in Cascading
gravity and massive gravity as we shall see later. In this case the Galileon symmetry
is exact even in the presence of gravity.

8.1.1.2 Screening/Self-Tuning Mechanism

As we have seen, IR modifications (like DGP) can be used to weaker the strength
of gravity at large (cosmological) distances. But this is not all. Rather than
providing a self-accelerating solution, IR modifications of gravity can lead to
screening or self/tuning mechanism whereby a large cosmological constant could be
screened resulting in a small late-time acceleration of the Universe. If this screening
happens dynamically for any value of the cosmological constant it could lead to a
degravitation mechanism [4, 39–41].

Unlike for self-accelerating solutions, for a degravitating/screening solution,
gravitons can condense to form a condensate whose energy density compensate the
cosmological constant. This would mean that the Cosmological Constant could be
large but the cosmic acceleration would be small.

As we have seen, the Friedman equation in DGP (8.2) is a completely local rela-
tion between the energy density and the Hubble rate. As long as the FRW equation is
local we can never use IR modifications to resolve the OLD cosmological constant
problem.
 In higher than five dimensions, the full evolution is expected to be non-local

from a four-dimensional viewpoint

H2 C F.H/ � 8�

3
G.�/ : (8.3)

 In Massive gravity, the effective Einstein equation in the presence of a
Cosmological Constant is expected to be of the form

G�� Cm2 @Lm

@g��
D �8�G �g�� ; (8.4)

where m is the graviton mass and Lm the Lagrangian for the mass term. For a
self-screening graviton condensate, we expect the spacetime to be Minkowski, for
instance

g�� D
�
1C f

�
�

m2

��
��� G�� D 0 ; (8.5)

in the presence of an arbitrary large Cosmological Constant�,
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m2 @Lm

@g��
D �8�G �g�� : (8.6)

This means that the cosmological constant can be reabsorbed into a redefinition of
the metric and coupling constants—and is hence a redundant operator.

Independently of its explicit realization, the idea behind degravitation [4, 39–41]
is to have a dynamical relaxation, meaning a dynamical evolution towards screened
solutions. Can we modify gravity in the IR such that at low energy sources
couple more weakly to gravity? In GR, a cosmological constant is the most
relevant operator one can write down (the operator which dominates at low energy)
since @�� D 0. Modifications of gravity such as DGP provide one step in answering
this question, but DGP is not sufficiently modified in the IR. The Friedman equation
ought to be more ‘non-local’. A possible solution would be too generalize DGP to
higher dimensions, known as Cascading Gravity [26, 27]. Another possibility could
be to work straight with a theory of massive gravity.

8.1.2 IR Modifications of Gravity

8.1.2.1 Extending DGP to Higher Dimensions

In 4C n dimensions, the gravitational potential scales as

V.r/ � 1

r.1Cn/
; (8.7)

and so gravity is weaker in larger dimensions. We would like this behaviour in the
IR while maintaining the standard Newton’s square law in the UV,

V.r/ � 1

r
�! V.r/ � 1

r.1Cn/
(8.8)

UV; small r IR; large r :

The gravitational potential V.r/ can be expanded using the Kallen–Lehman spectral
representation

V.r/ D Z

r
C
Z 1

0

ds2.s2/
e�sr

r
; (8.9)

corresponding to the propagator1 (in Fourier space)

1The tensor structure has been omitted in the expression for the propagator but can easily be
restored: all the massive modes in the spectral representation have the massive Fierz–Pauli tensor
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GF .k/ D Z

k2 � i� C
Z 1

0

ds2.s2/
1

k2 C s2 � i� (8.10)

D Z

k2 � i� C
1 �Z

k2 Cm2.k/ � i� ; (8.11)

and we can interpretm2.k/ as an effective mass for the graviton. For an infinite extra
dimension,Z D 0.

In higher dimensional theories, we find [27] that the mass scales as

m2.k/ � m2
0

��k2L2�˛ (8.12)

with ˛ D 1=2 in 5d, ˛ � 0 (up to logarithmical corrections) in 6d and ˛ D 0 in
seven dimensions or more. This means that one should consider six dimensions or
more to potentially obtain degravitation.

When dealing with higher dimensions the first guess would be to consider a
3-brane embedded in six or more dimensions. The 3-brane is then an object of
codimension-2 or higher which suffers from classical UV divergences that ought to
be renormalized already at the classical level [20, 44]. To avoid needing to address
these issues one can consider instead a “cascading” setup where a codimension-one
brane lies within a codimension-one brane etc. . . . In six dimensions this leads to the
following Cascading gravity theory [21, 26, 27, 29]

S D
Z

d4x
p�g4

�
M2

Pl

2
R4 CLM

�
C
Z
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p�g5

�
M3
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�
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d6x
p�g6

�
M4
6

2
R4

�
;

where the terms on the left are the most irrelevant operators which dominate in
the UV and terms to the right are the most relevant operators which dominate
in the IR. In this model gravity transitions from a four-dimensional behaviour at
short distances to a five-dimensional one and finally a six-dimensional one at large
distances. See also [28] for considerations in higher dimensions, where the same
type of behaviour occurs.

One advantage in going to seven or more dimensions is that there could be
no maximal value for the cosmological constant to be carried by the 3-brane. To
understand whether or not Cascading gravity realizes a dynamical relaxation, two
criteria should be satisfied:

Criterion I: Screening/Self-Tuning Existence of a Minkowski vacuum solution
in the presence of a cosmological constant on the 3-brane. In a six-dimensional

structure G.m/

��˛ˇ � .Q��.˛ Q��ˇ/ � 1
3

Q��� Q�˛ˇ/ with Q��� � ��� � k�k�=m
2, while the massless modes

have the Einsteinian tensor structure G.0/

��˛ˇ � .��.˛��ˇ/ � 1
2
����˛ˇ/.



208 A.J. Tolley

spacetime, tension on a 3-brane creates a deficit angle in the bulk rather than
leading to an acceleration on the brane. Similar properties were found in seven
dimensional Cascading gravity where a 3-brane lies in a 4-brane which lies in a
5-brane in 7d.

Criterion II: Dynamical Relaxation For a model to degravitate it should not
only satisfy the previous criterion but also admit a dynamical and causal process
by which one can relax to the solution found in criterion I. At the linearized
level this was shown to work in [41]. Non-linearly, this criterion is much harder
to check. As yet this has not been demonstrated non-linearly mainly due to the
complexity of the problem.

One strong motivation for considering massive gravity is as a toy-model of higher
dimensional gravity models (e.g. for cascading gravity) that potentially exhibit
degravitation.

8.1.2.2 Why Massive Gravity

In many respects, massive gravity is simpler than large extra dimensions and
cascading gravity. In massive gravity, the departure from GR is governed by
essentially a single parameter: the Graviton Mass.

The gain is that the theory is easier to solve than the higher dimensional
framework. One may worry that massive gravity looses diffeomorphism invariance.
In practice this is not so: Massive gravity can be formulated in a perfectly covariant
(or diff invariant way) at the price of introducing four Stückelberg fields. These
fields lead to new degrees of freedom, but far less than one would have for gravity
in six or more dimensions.

In massive gravity, the Vainshtein mechanism [74] is the screening mechanism
which ensures the recovery of GR in the massless limit m ! 0. This ensures
that massive gravity can be easily made to be consistent with most tests of GR
(effectively placing an upper bound on the graviton mass) without spoiling its role
as an IR modification of GR. We now turn to the formulation of massive gravity and
its cosmological applications.

8.2 Ghost-Free Massive Gravity

8.2.1 The Model

Other proceedings are dedicated to the description of massive gravity (de Rham) and
its Vainshtein Mechanism ( so we only summarize its formulation in what follows.
See [22] for a recent review. The Lagrangian for massive gravity takes the form [30]

L D M2
Pl

2

p�g �RC 2m2U .g; f /
�CLM ; (8.13)
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where all quantities are four-dimensional, f�� is the reference metric that be
Minkowski or other [54]. The potential term has only a finite number of possible
interactions in any dimensions. In four dimensions, it may be written as

U .g; f / D U2 C ˛3U3 C ˛4U4 ; (8.14)

with [30]

U2ŒK � D �
ŒK �2 � ŒK 2�

�
(8.15)

U3ŒK � D �
ŒK �3 � 3ŒK �ŒK 2�C 2ŒK 3�

�
(8.16)

U4ŒK � D �
ŒK �2 � 6ŒK �2ŒK 2�C 8ŒK 3�ŒK �C 3ŒK 2�2 � 6ŒK 4�

�
; (8.17)

and

K �
� .g; f / D ı�� �

p
g�˛f˛� : (8.18)

This model is sometimes referred to as dRGT and we keep the same terminology
to avoid confusion. The mass term can equivalently be written as characteristic
polynomials [52]

L D 1

2

p�g
 
M2

PlR �m2

4X
nD0

ˇnUnŒX�

!
CLM ; (8.19)

with

X�
� D

p
g�˛f˛� : (8.20)

These interactions appear as very non-trivial, yet it can be shown that they are
protected by a non-renormalization theorem [33].

8.2.1.1 Cosmology of Massive Gravity: A Basic Tension

The theory of massive gravity presented previously ensures the absence of a sixth
degree of freedom in four dimensions, but it does not guarantee that all five
remaining degree are ghost free.

The representation theory of the de Sitter group gives the Higuchi bound for
massive spin 2 representations [55]

• m2 D 0: Corresponds to GR and has two degrees of freedom
• 0 < m2 < 2H2: Corresponds to massive gravity and has five degrees of freedom,

one of them being a ghost (the Higuchi ghost)



210 A.J. Tolley

• m2 D 2H2: Corresponds to Partially massless gravity and has four degrees of
freedom

• m2 > 2H2: Corresponds to massive gravity and has five degrees of freedom
without Higuchi ghost.

For every cosmological solution we need to check carefully whether or not the
helicity-0 mode is unitary, since this is not guaranteed a priori by the theory.
However this is not guaranteed to be a problem either, for instance in DGP the bound
is always satisfied [7, 63]. This may not obviously be relevant for a Minkowski
reference metric which breaks the de Sitter symmetry.

8.2.2 Decoupling Limit Cosmology

We can take a decoupling limit of massive gravity (and as we shall see later of bi-
gravity as well) where after diagonalization massive gravity is equivalent to a free
helicity-2 particle and a helicity-1 coupled to a helicity-0 particle. This limit sends
MPl !1, m! 0 while keeping the scale �3 D .MPlm

2/1=3 fixed [23]

L D �1
2
h�� OE ˛ˇ

�� h˛ˇ C h��
3X

nD1

an

�
3.n�1/
3

X.n/
�� Œ˘�C

1

MPl
h��T�� ; (8.21)

with ˘�� D @�@�� and X.n/
�� Œ˘� � ˘n

�� in such a way that the trace of X would be
a total derivative. The coefficients an are related to the previous coefficients ˛n.

The helicity-0 mode interactions are true Galileons and preserve the Galileon
symmetry. Since the Galileon symmetry is EXACT, we only require that ˘�� is
homogeneous and isotropic to describe FRW. The generic solution for the helicity-0
mode near x D 0 which is isotropic in this limit is [31]

� � A.t/C B.t/x2 : (8.22)

Interestingly there is no equivalent of this form in the covariant Galileon or
Horndeski theory [37, 58] because the symmetry is broken in these cases but not
in massive gravity. The resulting metric takes the form

ds2 D � �1 � . PH CH2/x2
	

dt2 C


1 � 1

2
H2x2

�
dx2

D
�
��� C hFRW

��

�
dx� dx� ; (8.23)

where the equations of motion fix A and B in (8.22) for instance for a pure
Cosmological constant source B is constant and A D �Bt2.
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8.2.2.1 Self-Accelerating Solution

Considering the following background solution plus perturbation split [31]

� D 1

2
qdS�

3
3x

2 C � (8.24)

h�� D �1
2
H2

dSx
2��� C ��� (8.25)

T�� D �	��� C ��� ; (8.26)

the background quantities satisfy the equations of motion for the self-accelerating
branch,

a1 C 2a2qdS C 3a3q2dS D 0 (8.27)

H2
dS D

	

3M2
Pl

C 2�3
3

MPl

�
a1qdS C a2q2dS C a3q3dS

�
; (8.28)

where we see an acceleration H2
dS > 0 even in the absence of a cosmological

constant, 	 D 0. Unlike for DGP, this self-accelerating solution admits no ghost
for a2 C 3a3qdS > 0

L .2/ D �1
2
��� OE ˛ˇ

�� �˛ˇ C
6H2

dSMPl

�3
3

.a2 C 3a3qdS/ ��� C 1

MPl
������: (8.29)

A remarkable feature is worth pointing out at this level: the fluctuation � does not
directly couple to matter. As a result there is no need for a Vainshtein mechanism to
screen to field [31].

8.2.2.2 Screening/Self-Tuning (Degravitating) branch

Another background solution to classical equations of motion in the decoupling
limit (8.21) is

� D 1

2
qdS�

3
3x

2 C � (8.30)

h�� D 0C ��� (8.31)

T�� D �	��� C ��� ; (8.32)

where we obtain a Minkowski solution for any value of the cosmological constant
!!! Perturbations are stable and present the Vainshtein mechanism

L .2/ D �1
2
��� OE ˛ˇ

�� �˛ˇ C
3

2
��� C 1

MPl
.��� C ����/ ��� (8.33)
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however the scale of the strong coupling ends up being too large for being
observationally viable. Nevertheless this still provides a proof of principle for how
one could evade Weinberg’s no-go theorem.

8.2.2.3 DL Cosmology Summary

More generally, the decoupling limit implies the existence of isotropic and inho-
mogeneous cosmological solutions for massive gravity which for suitable range of
parameters are free from the Higuchi bound (no ghost in helicity-0 sector).

The absence of Higuchi bound opens up possibilities for background Vainshtein
effects where the mass can be as small as desired leading to consistent results with
the expansion history at early times.

All the solutions presented so far are in the decoupling limit. They will all map
to solutions in the full non-linear theory but may be hard to find.

8.3 Cosmology of Massive Gravity

8.3.1 A No-Go and Ways Out

The simplest model (dRGT massive gravity in Minkowski) does not support spa-
tially flat (or closed) cosmological solutions which are FRW meaning homogeneous
and isotropic.

The argument is simple: as in GR we have a Friedman equation and a Raychaud-
huri equation. In GR, the second follows from the first by diff invariance. In massive
gravity diff invariance is broken and so the would-be Raychaudhuri equation no
longer follows from the first equation. The consistency of both equations imposes a
condition on the scale factor [10].

Indeed, assuming an FRW metric,

ds2 D �N2.t/ dt2 C a.t/2 dx2 ; (8.34)

the lagrangian for massive gravity becomes

L D 3M2
Pl

�
�a Pa

2

N
�m2.a3 � a2/Cm2N.2Na3 � 3a2 C a/

�
: (8.35)

The constraint imposed on the scale factor by consistency of the would be Friedman
and Raychaudhuri equation is then [10]

m2@t
�
a3 � a2� D 0 ; (8.36)

which is clearly uninteresting.
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To bypass this no-go several options can and have been considered:

• Resolution I: Accept Inhomogeneities
The most natural and certainly the most physical resolution to the previous no-go
(although also probably the hardest to implement from a purely technical aspect)
is to accept the existence of inhomogeneities [10]. While inhomogeneities may
be important at large distances (beyond our observable Universe—which is
the picture modern cosmology has in mind), the Vainshtein mechanism would
guarantee that the inhomogeneities are unobservable at short distance scales
(within the observable Universe) and before late times. The inhomogeneities
would only appear on a scale set by the graviton mass (which is usually assumed
to be close to the current Hubble parameter). Since observational constraints on
inhomogeneities at the current Hubble scale are actually very weak, the presence
of these inhomogeneities would thus have little observational effects and yet
would resolve the previous no-go.

Moreover, inhomogeneities and anisotropies can be hidden inside the
Stückelberg fields which do not directly couple to matter but only indirectly
though the Planck scale. Inhomogeneities in the Stückelberg fields are thus
observationally very weak.

To summarize, the metric could even remain perfectly homogeneous and
isotropic at the price of introducing some inhomogeneities in the Stückelberg
fields that would show up at the level of cosmological perturbations but could
easily be small [15, 17, 18, 46, 50, 51, 60, 62, 72, 76, 77, 81].

• Resolution II: Modify the Assumptions
The previous no-go had several underlying assumptions which can be bypassed
to allow for FRW solutions:

– Considering an open Universe rather than a flat or closed one allow for FRW
solutions [49] which are however unstable [75].

– Consider a de Sitter or FRW reference metric, however this also leads to
instabilities [42] as we shall see later. (See also [25] for the decoupling limit
of massive gravity on de Sitter).

– Make the reference metric dynamical, leading to bi-gravity [53]. As we shall
see later, this could prevent the instabilities [2, 5, 8, 61, 78, 79].

• Resolution III: Extension or Modification of the Theory
Other more significant modifications of the theory allow for FRW solutions:

– Quasi-Dilaton massive gravity which admits self-accelerating solutions but
which appear to be unstable [11, 13, 19]

– Generalized Quasi-Dilaton massive gravity which admits stable self-
accelerating solutions [14, 16, 67]

– Lorentz-violating massive gravity [9]
– Varying mass gravity [19, 64, 80]
– Multi-vierbeins gravity [71]
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– Extended Massive gravity [3, 57]
– Non-local Massive gravity [59, 66]

In what follows we look at a few of these alternatives and show how massive gravity
with FRW reference metric allows for an FRW solution but inevitably suffers from
an Higuchi ghost at early times.

8.3.1.1 From Acceleration to Decceleration

Consider the spacetime metric

ds2 D �N2.t/ dt2 C a2.t/ dx2 ; (8.37)

and the reference metric,

@��
a@��

bfab dx� dx� D � � P�0�2 dt2 C b2.�0/ dx2 : (8.38)

For instance if the reference metric was de Sitter it could be written as previously
with b.�0/ D exp

�
Hf �

0
�
.

Before proceeding, let us address at this point what happens when the metric
transits from an acceleration to a decceleration. In that case �0 changes sign and
one of the eigenvalues of

p
g�1f vanishes. To better understand the physics at that

point, let us move onto the vierbein formulation which can accommodate a change
of sign.

The vierbein formulation is analytic in the Stückelberg fields �a [6, 48, 56] and
the mass term takes the form

det
h
ea� C 	�a

bf
b
c @��

c
i
: (8.39)

There is no singularity in the formulation as long as it is possible to solve the
following equation for the Lorentz Stückelberg fields�a

b (���T D �)

e�Œa�b�
c f

c
d @��

d D 0 ; (8.40)

which corresponds to six equations for six unknown Lorentz transformations. The
main point to notice is that even when P�0 D 0, one can solve for ı�a

b D : : : ı�c .
This point originally made in [73] was later explained in [47].

8.3.1.2 Dressed Mass and Partially Massless

Using the ansate (8.37) and (8.38) into the Lagrangian for massive gravity, we obtain
the following equations:
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where Hf D b0.�0/= P�0b.�0/ is the effective Hubble parameter of the FRW
reference metric and H D Pa=aN . The normal branch solution of (8.41) is given by

b

a
D H

Hf

: (8.43)

The effective mass (governing the kinetics of the helicity-0 mode) is given by [42]

Qm2.H/ D m2

2M2
Pl

H

Hf

"
ˇ1 C 2ˇ2 H

Hf

C ˇ3 H
2

H2
f

#
; (8.44)

and the coefficient of the kinetic term for the helicity-0 mode is

Lhelicity�0 / � Qm2.H/
� Qm2.H/� 2H2

�
.@�/2 ; (8.45)

so the generalized Higuchi bound is

Qm2.H/ > 2H2 : (8.46)

If we make the special choice ˇ1 D ˇ3 D 0 and ˇ2 D 1 and m2 D 2H2
f

then the effective mass term is simplify Qm2.H/ D 2H2 and the kinetic term
vanishes regardless of the source [25]. This corresponds to partially massless case.
Unfortunately this theory keeps some interactions between the helicity-0 mode
and the vectors, and the theory is thus infinitely strongly coupled. This happens in
massive gravity as in bi-gravity.

8.3.1.3 Higuchi Versus Vainshtein

As seen before, considering massive gravity on a FRW reference metric leads to
the effective mass term (8.44) and the Higuchi bound imposes the relation (8.46).
In parallel, observations and the screening of the Helicity-0 mode impose an upper
bound on the effective graviton mass [42]
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As result to satisfy both the Higuchi bound and the Vainshtein requirements one
should satisfy

"
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#
; (8.48)

which is impossible to satisfy. We shall see in what follows how bi-gravity resolves
this tension.

8.3.2 Extensions

8.3.2.1 Bi-gravity

We now consider the theory of bi-gravity [53],
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p�g
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p�f M2
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The analogue of the Higuchi bound in that case is [43]

Qm2 �
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Hf =Mf

H=MPl

�2#
> 2H2 : (8.50)

We recover the massive gravity bound by taking the limitMf !1, while keeping
MPl andHf finite. In that massive gravity limit it was not possible to obtain

Hf

Mf

� H

MPl
; (8.51)

but in bi-gravity any solution which satisfies (8.51) at early times automatically
satisfies the Higuchi bound and is thus free from this ghost.

The resulting Friedman equations are then
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When Hf =Mf � H=MPl these equations can be used to solve for Qm2 and Hf . In
the region where ˇ1 ¤ 0, the resulting bound simplifies to

3H2 > 2H2 (8.54)

which is always satisfied ! As a result the tension between the stability of the theory
and the observations is resolved in bi-gravity [43].

As an example, one can set ˇ2 D ˇ3 D 0 and ˇ1 D 2M2
Pl leading to

H2 D 1

6M2
Pl
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.a/2 C 12m4M6
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f

!
; (8.55)

which has been shown to be observationally viable, [1]. Moreover in that case the
stability bound reduces to [43]

 
1
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C 12M2
f

m4ˇ21
H4

!
> 0 ; (8.56)

which is also always satisfied.

8.3.2.2 Decoupling Limit of Bi-gravity

In massive gravity (without introducing the Stückelberg fields), the mass term
breaks a single copy of the local diffeomorphism group down to a global Lorentz
group

Diff.M/ �! Global Lorentz : (8.57)

In Bi-gravity (without introducing the Stückelberg fields), the mass term (or inter-
action term between the two metrics) breaks two copies of local diffeomorphism
group down to a single copy local diffeomorphism group

Diff.M/� Diff.M/ �! Diff.M/diagonal : (8.58)

As a result bi-gravity is also best understood with the Stückelberg fields for
the broken diffs which in turn lead to a Galileon field in its decoupling limit—
dominating the interactions of the bi-gravity model.2

2The Stückelberg fields are as necessary or unnecessary in bi-gravity than they are in massive
gravity. The physics is easier to follow when the Stückelberg fields are introduced but even with
the Stückelberg fields, both theories are still strongly coupled at the scale �3 D .MPlm

2/1=3 or the
equivalent in terms of Mf .
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In bi-gravity we can work with the following metrics:


Dynamical Metric I W g��.x/

Dynamical Metric II W F�� D fAB.�/@��A@��B ; (8.59)

where to start with we can express the Stückelberg fields in terms of the helicity-0
mode (and omitting for now the helicity-1 mode)

�A D xa C 1

m2MPl
@a�.x/ : (8.60)

Denoting by h�� the fluctuations of the metric g�� and by v�� the fluctuations of the
metric f�� , then the decoupling limit of bi-gravity is [43] (omitting the helicity-1
modes)

Shelicity�2=0 D
Z

d4x

"
� 1
4
h�� OE ˛ˇ�� h˛ˇ �

1

4
v�� OE ˛ˇ

�� v˛ˇ C �3
3

2
h��.x/X

��

C�
3
3

2

MPl

Mf

h��.x/X
��v�AŒx

a C��3
3 @

a��
�
�a� C Ŏ A�

�
Y ��

#
;

(8.61)

with Ŏ�� D @�@��=�3
3 and

X�� D �1
2

4X
nD0

Ǒ
n

.3 � n/ŠnŠ �
��������� ��C Ŏ �n �3�n (8.62)

Y �� D �1
2

4X
nD0

Ǒ
n

.4 � n/Š.n � 1/Š�
��������� ��C Ŏ �n�1

�4�n : (8.63)

As a result, the two massless spin-two fields coupled to a Galileon in a highly non-
minimal way. Now including the helicity-1 modes, the decoupling limit of bi-gravity
and massive gravity gives the following helicity-1/helicity-0 interactions [70]

Shelicity�1=0

D �1
8
ı
���
abcd

�
2Ga

�.ı C Ŏ /b�!cıd� C .ı C Ŏ /a�.ı C Ŏ /b�Œ!c!d� C ıd� !c˛!˛�
�
;

with

!ab D
Z 1

0

du��2ue�u Ŏ a0

a Ga0b0e�u Ŏ b0

b (8.64)
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Gab D @aBb � @bBa D !ac

�
ı C Ŏ

�c
b
C .ı C Ŏ / ca!cb ; (8.65)

where Ba is the helicity-1 mode. Since partially massless gravity (resp. bi-gravity)
should only have 4 (resp. 7) propagating degrees of freedom—since the helicity-0
must be pure gauge—and since from the above action we see that the helicity-0
mode always interact with the helicity-1 modes in bi-gravity and in massive gravity,
we can conclude that there is no partially massless theory of gravity or bi-gravity
[32, 43].

8.3.2.3 Galileon Duality

There are actually two (completely equivalent) ways to introduce the Stückelberg
fields. Rather than the procedure (8.59)

8<
:

Dynamical Metric I W g��.x/

Dynamical Metric II W F�� D fAB.�/@��A@��B
Relations between Coordinates W QxA D �A.x/ D xA C @A�.x/

(8.66)

we can of course use instead

8<
:

Dynamical Metric I W QGAB. Qx/ D g��.Z/@AZ�@BZ
�

Dynamical Metric II W fAB. Qx/
Relations between Coordinates W x� D Z�. Qx/ D Qx� C @�. Qx/

(8.67)

This leads to a remarkable property. For every Galileon field �.x/ one can define a
dual Galileon field via the implicit field-dependent coordinate transformation [34]

QxA D �A.x/ D xA C @A�.x/ (8.68)

x� D Z�. Qx/ D Qx� C @�. Qx/ : (8.69)

Considers a Galileon operator in D dimensions

Ln.�/ D ���. Ŏ /n�1�D�nC1 ; (8.70)

Then every Galileon field Lagrangian in D dimensions

L .�/ D
DC1X
nD2

cnLn.�/ (8.71)

admits a dual formulation as a Galileon
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L ./ D
DC1X
nD2

pnLn./ (8.72)

with distinct coefficients [34]

pn D 1

n

DC1X
kD2

.�1/kck k.d � k C 1/Š
.n � k/Š.d � nC 1/Š : (8.73)

The coupling to other matter fields transforms in a local way under this duality, [35].
This could have interesting consequences for understanding the features associ-

ated with the strong coupling and the Vainshtein mechanism in this types of theories.

8.3.2.4 Quasi-Dilaton Massive Gravity

To finish, let us present another extension of massive gravity known as quasi-dilaton.
The same arguments found previously can be applied to generic cosmological
solutions on quasi-dilaton massive gravity [12]

SE D
Z

d4x
p�g

(
M2

Pl

2

"
R � !

M2
Pl

g��@��@�� � m
2

4
U Œ QK�

#
CLM.g��;  /

)
;

(8.74)

with

QK �
� D ı�� � e�=MPl

q
g�˛@˛�a@��b�ab : (8.75)

This model avoids the no-FRW argument formulated previously thanks to the quasi-
dilaton field � . Generically one finds a non-zero kinetic term for the helicity-0 mode,
showing that the general cosmological solutions are healthy.

A generalized version of the quasi-dilaton was shown to provide stable self-
accelerating solutions [14,16]. For the generalized quasi-dilaton, the action takes the
same form as in (8.74) with the expression (8.75) for with the generalized expression
for the tensor QK �

� ,

QK �
� D ı�� � e�=MPl

q
g�˛@˛�a@��b Q�ab ; (8.76)

and

Q��� D ��� � ˛�
�3
3

e�2�=MPl@��@�� : (8.77)
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Of course this theory can be generalized to arbitrary reference metrics ��� ! f�� ,
but it makes more physical sense to keep Minkowski as the reference metric.
Effectively this corresponds to a theory of massive gravity with a dynamical mass
and couplings and a dynamical reference metric governed by the quasi-dilaton scalar
field. The self-accelerating solutions in that generalized theory were shown to be
free of instabilities, making them particularly appealing [14, 16].

8.4 Summary

In these proceedings we have first established that massive gravity is a useful
toy model to understand higher dimensional theories. They potentially exhibit
both self-acceleration and self-tuning (degravitating) solutions. FRW solutions
(fully homogeneous and isotropic) cannot directly emerge from massive gravity.
Instead one can consider solutions which are inhomogeneous beyond the observable
Universe, which is actually closer to natural concepts of modern cosmology. Inho-
mogeneous or anisotropic solutions (or both simultaneously) do exist in massive
gravity. Not all such solutions are stable but some are.

We have shown how for Partially Massless gravity, the Higuchi bound was
automatically satisfied for any choice of matter. Unfortunately the decoupling limit
makes it easy to see the absence of partially massless (bi)gravity.

For massive gravity on a fixed FRW reference metric, the bound is in conflict
with observations (it would effectively impose the mass to be much larger than the
Hubble parameter at early time which would be ruled out observationally).

For bi-gravity on the other hand the Higuchi is almost always satisfied regardless
of the choice of matter as long as H � Hf , where H is the Hubble parameter of
the metric to which matter couples to.

Finally we have shown how to extend massive graviton to include a quasi-dilaton
scalar field which admits stable self-accelerating solutions.

Needless to say this is still very early days for the cosmology in massive
gravity and bi-gravity and the amount of different subclasses of models considered
illustrates how rich and yet complex the cosmology of massive (bi-)gravity is.

Acknowledgements AJT is supported by Department of Energy Early Career Award DE-
SC0010600. AJT wishes to thank the organizers of the seventh Aegean Summer School for an
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Chapter 9
Higher-Spin Theory and Space-Time
Metamorphoses

M.A. Vasiliev

Abstract Introductory lectures on higher-spin gauge theory given at seventh
Aegean workshop on non-Einstein theories of gravity. The emphasis is on quali-
tative features of the higher-spin gauge theory and peculiarities of its space-time
interpretation. In particular, it is explained that Riemannian geometry cannot play a
fundamental role in the higher-spin gauge theory. The higher-spin symmetries are
argued to occur at ultra high energy scales beyond the Planck scale. This suggests
that the higher-spin gauge theory can help to understand Quantum Gravity. Various
types of higher-spin dualities are briefly discussed.

9.1 Introduction

Higher-spin (HS) gauge theories form a class of theories exhibiting infinite-
dimensional symmetries which go beyond conventional lower-spin symmetries.
The primary goal of these lectures is to focus on qualitative aspects of HS gauge
theories avoiding technical details as much as possible. The emphasis is on possible
consequences of HS symmetries for our understanding of space-time. It will be
explained in particular that in the setup of HS gauge theories the usual concepts of
Riemannian geometry such as metric, local event and space-time dimension cannot
play a fundamental role. The HS symmetries will be argued to occur at ultra high
energy scales beyond the Planck scale. Having a potential to describe transPlanckian
energies, HS gauge theory can shed light on the problem of Quantum Gravity.
Various aspects of HS dualities including AdS=CFT and duality with quantum
mechanics are briefly discussed.
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9.2 Lower-Spin Global Symmetries

The fundamental example of a lower-spin symmetry is provided by the Poincaré
symmetry which underlies relativistic theories. It acts on coordinates of Minkowski
space-time as ıxa D �a C �abxb where �a and �ab are parameters of infinitesimal
translations and Lorentz rotations, respectively. One can write

ıxa D ŒT; xa� ; T D �nPa C �abMab ; (9.1)

where

Pa D @

@xa
; Mab D xa @

@xb
� xb @

@xa

are the generators of the Poincaré algebra iso.d � 1; 1/ obeying the commutation
relations

ŒMab; Pc� D Pa�bc � Pb�ac ;

ŒMab; Mcd � DMad�bc �Mbd�ac �Mac�bd CMbc�ad ;

ŒPa ; Pb� D 0 ;

where �ab is the Minkowski metric.
The Poincaré algebra admits the (anti-) de Sitter deformation l with

ŒPa ; Pb� D �Mab ;

which describes symmetries of either anti-de Sitter space at� < 0 (l D o.d�1; 2/)
or de Sitter space at � > 0 (l D o.d; 1/). At � D 0, l D iso.d � 1; 1/ describes
the symmetries of Minkowski space.

Supersymmetry is the extension of the Poincaré symmetry by supergenerators
QA obeying relations

fQA ;QBg D 
aABPa ;

ŒMab ;QA� D �abA
BQB ; �ab D 1

4
Œ
a ; 
b� ;

where A;B D 1; 2; 3; 4 are the Majorana spinor indices in four dimensions. Note
that, being fermions, supergenerators obey anticommutation relations.

Internal symmetry generators Ti are space-time invariant

ŒTi ; Pa� D 0 ; ŒT i ;Mab� D 0 :
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In particular, the symmetries of the Standard Model Ti 2 su.3/ � su.2/ � u.1/ are
of this type.

To complete the list of symmetries that play a role in conventional lower-
spin theories it remains to mention conformal (super)symmetries. These will be
discussed in some more detail below.

9.3 Local Symmetries

A useful viewpoint is that any global symmetry is the remnant of a local symmetry
with parameters like "a.x/; "ab.x/; "˛.x/; "i .x/ being arbitrary functions of space-
time coordinates. Local symmetries are symmetries of the full theory. Global
symmetries are symmetries of some its particular solution.

For example, the infinitesimal diffeomorphisms ıxa D "a.x/ are symmetries of
GR while the global symmetries with "a.x/ D �a C �abxb are symmetries of the
Minkowski solution gab D �ab of the Einstein equations.

Let

S D
Z
Md

L.'.x/; @a'.x/; : : :/

be invariant under a global symmetry g with parameters �n .n D a; ˛; i; : : :/. Letting
the symmetry parameters be arbitrary functions of space-time coordinates, �n !
"n.x/, we obtain that

ıS D �
Z
Md

J an .'/@a"
n.x/

since ıS should be zero at @a"n.x/ D 0. J an .'/ are conserved currents since
@aJ

a
n .'/ D 0 by virtue of the field equations ıS D 0.

The local symmetry is achieved with the aid of gauge fields Ana that have the
transformation law

ıAna D @a"n C : : : ;

where the ellipsis denotes possible field-dependent terms. The following modifica-
tion of the action

S �! S C�S C : : : ; �S D
Z
Md

J an .'/A
n
a.x/

preserves local symmetry in the lowest order in interactions. The term�S describes
the so-called Noether current interactions.

There is, however, a subtlety if '.x/ were themselves gauge fields with gauge
parameters "0. In this case it may happen that J an .'/ is not invariant under the "0
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symmetry. Hence the Noether current interaction for several gauge fields may be
obstructed by gauge symmetries.

Localization of various types of lower-spin symmetries leads to important classes
of gauge field theories.

9.3.1 Yang–Mills Fields

The Yang–Mills theory is responsible for the localization of internal symmetries.
For a Lie algebra l with generators Ti , Yang–Mills fields Aia.x/ and symmetry
parameters "i are valued in l

Aa.x/ D Aia.x/Ti ; ".x/ D "i .x/Ti :

The Yang–Mills gauge transformation is

ıAa.x/ D Da".x/ ;

where

Da".x/ D @a".x/C ŒAa.x/ ; ".x/�

is the covariant derivative. The commutator of the covariant derivatives gives the
Yang–Mills curvature

ŒDa ;Db� D Rab ; Rab D @aAb � @bAa C ŒAa; Ab� ;

which has the transformation law

ıRab D ŒRab; "� :

Needless to say that the Yang–Mills fields play a prominent role in the modern
theory of non-gravitational fundamental interactions, i.e. the Standard Model.

9.3.2 Einstein–Cartan Gravity and Supergravity

Localization of the Poincaré symmetry leads to the Cartan formulation of Einstein
gravity. The Yang–Mills gauge fields An� D .e�a; !�ab/ associated with the Poincaré
algebra include the frame field (vielbein) e�a and the Lorentz connection !�ab. The
frame field e�a relates base indices � with the fiber ones a. (In Minkowski space in
Cartesian coordinates, where e�a D ıa� , the two types of indices can be identified.)
The gauge transformations have the form
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ıe�
a.x/ D @�"a.x/C !�ab.x/"b.x/ � "ab.x/e�b.x/C�e�a ;

ı!�
ab.x/ D @�"ab.x/C !�ac.x/"cb.x/ � !�bc.x/"ca.x/C�!�ab :

Here �e�a and �!�ab denote some corrections to the Yang–Mills transformation
law, which are proportional to the curvatures

R��
a D @�e�aC!�abe�b�.� $ �/ ; R��

ab D @�!�abC!�ac!�cb�.� $ �/ :

The zero-torsion constraint R��a D 0 expresses the Lorentz connection in terms
of the frame field and its derivatives: ! D !.e; @e/. In this case R��� equals to
the Riemann tensor. Recall that the relation of the metric with the frame field is
g�� D e�ae�b�ab.

Localization of supersymmetry extends the gravitational fields by the spin-3/2
gauge field gravitino  �˛ with the gauge transformation law

ı �˛ D D�"˛ C : : : :

Gauge theories of this type are called supergravities, constituting a very interesting
class of extensions of the theory of gravity. (See e.g. [1] and references therein.
Note that the construction of supergravity in terms of the gauge fields of the
supersymmetry algebra was suggested in [2].)

9.3.3 Spontaneous Symmetry Breaking

Generally, one should distinguish between the symmetryG of some equations and a
symmetry QG of some their particular solution. For example, for the case of the Higgs
fieldHi.x/ D Hi

0Chi .x/, the unbroken part QG � G is a residual symmetry ofHi
0 :

QG D SU.3/ � U.1/ in the Standard Model. For Hi
0 having a non-zero dimension

ŒH i
0 � D cm�1 � GeV , spontaneous symmetry breaking is a low-energy effect. In

other words, the symmetry restores at E > Hi
0 .

In the unbroken regime, the gauge fields associated with the usual lower-spin
symmetries describe massless particles of spin one A�i , spin 3=2  � ˛ and spin two
e�
a, !�ab.

9.4 General Properties of HS Theory

The key question is whether it is possible to go to larger HS symmetries. If yes,
what are HS symmetries and HS counterparts of the lower-spin theories including
GR? What are physical motivations for their study and possible outputs?
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9.4.1 Fronsdal Fields

As shown by Fronsdal [3], all symmetric massless HS fields are gauge fields. They
are described by rank-s symmetric tensors ��1:::�s obeying the double tracelessness
condition ����5:::�s D 0. The gauge transformation is

ı��1:::�s .x/ D @.�1"�2:::�s/.x/ ; (9.2)

where the gauge parameter is symmetric and traceless

"���3:::�s�1 D 0 : (9.3)

The field equations have the form

R�1:::�s .x/ D 0 ;

where the Ricci-like tensor R�1:::�s .x/ is

R�1:::�s .x/ D ���1:::�s .x/ � s@.�1@���2:::�s�/.x/C s.s � 1/
2

@.�1@�2�
�
�3:::�s�/.x/ :

The gauge invariant Fronsdal action is

S D
Z
Md

�1
2
��1:::�sR�1:::�s .�/�

1

8
s.s � 1/����3:::�sR

 �3:::�s .�/
�
:

9.4.2 No-Go and the Role of .A/dS

In the 1960s of the last century it was argued by Weinberg [4] and Coleman and
Mandula [5] that HS symmetries cannot be realized in a nontrivial local field theory
in Minkowski space. In the seventies it was shown by Aragone and Deser [6] that HS
gauge symmetries are incompatible with GR within an expansion over Minkowski
space. The general belief was that nontrivial interactions of massless HS fields
cannot be introduced.

Nevertheless, in the 1980s, it was shown by light-cone [7, 8] and covariant
methods [9, 10] that some non-gravitational HS interactions can be constructed at
least at the cubic order. These results suggested that some consistent HS theory
should exist.

The further progress resulted from the observation that the consistent formulation
of the HS gauge theory requires a curved background instead of the flat Minkowski.
The most symmetric curved cousins of the flat Minkowski space are de Sitter and
anti-de Sitter spaces. That HS theories admit consistent interactions including the
gravitational interaction in .A/dS background was shown in [11, 12]. In agreement
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with the no-go statements, the limit of zero cosmological constant � ! 0 turns
out to be singular so that, indeed, HS theories with unbroken HS symmetries do not
exist in the Minkowski background.

9.4.3 HS Symmetries Versus Riemannian Geometry

The HS symmetries and the space-time symmetries do not commute simply because
HS generators are higher-rank Lorentz tensors

ŒT a ; T HS� D T HS ; ŒT ab ; T HS� D T HS :

However, the same commutation relations imply that HS generators transform the
space-time generators to the HS generators. Since the gauge fields for space-time
generators are the gravitational frame field and Lorentz connection, this implies that
HS transformations map the gravitational fields (metric) to the HS fields.

This simple observation has the far-going consequence that the Riemannian
geometry is not appropriate for the HS theory, implying in particular that the concept
of local event may become illusive in the HS theory!

Though it is not appropriate to use the metric tensor in the HS theory, we do
not want to give up the coordinate independence of GR. Fortunately, this can be
achieved in the framework of the formalism of differential forms.

Differential forms are totally antisymmetric tensors. A p-form is a rank-p totally
antisymmetric tensor !.x/ D ��1 : : : ��p!�1:::�p .x/ where �� are anticommuting
symbols (variables)

���� D �����

usually called differentials �� D dx� . The invariant differentiation is provided by
the exterior (de Rham) derivative

d D �� @

@x�
; d 2 D 0 :

This formalism is covariant because, due to the total antisymmetrization of indices,
symmetric Christoffel symbols drop out from the covariant derivatives. In this
language, the connections A D ��Ai�Ti are one-forms, while the curvatures R D
D2 with D D d C A are two-forms.

Farther elaboration of this language in application to HS theory leads eventually
to a deeper understanding of fundamental concepts of space-time including its
dimension.
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9.4.4 HS Gauge Theory, Quantum Gravity and String Theory

As explained in more detail below, the HS symmetry is in a certain sense
maximal relativistic symmetry. Hence one can speculate that it cannot result from
spontaneous breakdown of a larger symmetry. This implies that the HS symmetries
are manifest at ultrahigh energies above any scale including the Planck scale. If this
is true, the HS gauge theory should capture effects of Quantum Gravity. This opens a
unique possibility for the theoretical study of the unreachable by experimental tests
energy scale of Quantum Gravity by means of the highly restrictive HS symmetry.

On the other hand, since the lower-spin symmetries are subalgebras of the HS
symmetries, it is natural to expect that the lower-spin theories can correspond to
low-energy limits of the HS theory with spontaneously broken HS symmetries.

A related issue is a connection of HS theory with String Theory. A natural con-
jecture is that String Theory can be interpreted as a spontaneously broken theory of
the HS type, where s > 2 fields acquire nonzero masses. An interesting recent con-
jecture [13] is that String Theory can be identified with the full quantum HS theory.

9.4.5 HS AdS=CFT Correspondence

That the HS gauge theories are most naturally formulated in the anti-de Sitter back-
ground makes them interesting from the perspective of AdS=CFT correspondence
[14–16]. Various aspects of the HS holography were discussed by many authors
starting from [17–19] (see also [20, 21]). However, the concrete proposal is due to
Klebanov and Polyakov [22] who conjectured that the AdS4 HS theory is dual to
3d the vectorial conformal models. This hypothesis was successfully checked by
Giombi and Yin [23], that triggered a lot of interest to the HS holography. The
conjecture of Klebanov and Polyakov was later extended to the fermionic boundary
systems [24, 25] as well to the AdS3=CFT2 correspondence [26–28].

The HS holography has several features which give a hope that its analysis may
help to uncover the origin of AdS=CFT. Indeed, as discussed in some more detail
below, a progress in this direction has been achieved in [29]. It should be stressed
that the HS holography does not rely on supersymmetry and is a weak–weak duality
that therefore can be checked directly on the both sides. For more detail on the HS
holography we refer the reader to [30, 31].

9.5 Global HS Symmetry: Idea of Construction

The simplest way to figure out what is a HS symmetry is via the AdS=CFT
correspondence. Namely, the global HS symmetry of the most symmetric AdSdC1
solution can be identified with the maximal symmetry of the d -dimensional free
conformal fields. In the most cases the latter are identified with the massless scalar
and/or spinor.
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Consider KG massless equation in d -dimensional Minkowski space

�C.x/ D 0 ; � D �ab @2

@xa@xb
:

The conformal HS symmetry is the symmetry of this equation. What is this
symmetry? Its structure was first elaborated for d D 3 in [32] and soon after by
Eastwood [33] for any d .

Of course, this symmetry contains the Poincaré transformations as well as the
scale transformation (dilatation)

ıC.x/ D "DC.x/ ; D D xa @

@xa
C d

2
� 1

and the special conformal transformations

ıC.x/ D "aKaC.x/ ; Ka D .x2�ab � 2xaxb/ @
@xb
C .2 � d/xa :

Altogether Pa;Mab; K
a and D form the conformal Lie algebra o.d; 2/.

To figure out the structure of the whole conformal HS algebra it is useful to
consider an auxiliary problem.

9.5.1 Auxiliary Problem

Consider the equations

DCA.x/ D 0 ; (9.4)

where CA.x/ is a set of fields valued in some space V (the label A) and

D D d C !.x/ ; !A
B.x/ D !˝.x/T˝ A

B

is a covariant derivative acting in the space V treated as a gl.V /-module. That is
!.x/ is some gl.V /-connection. The covariant derivativeD is demanded to be flat,
i.e.

D2 D 0 : (9.5)

Clearly, Eqs. (9.4) and (9.5) are invariant under the gauge transformation

ıCA.x/ D �"AB.x/CB.x/ ; "A
B.x/ D "˝.x/T˝ A

B.x/ ;

ı!.x/ D D".x/ WD d".x/C !.x/".x/ � ".x/!.x/ ;
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where indices are implicit. The condition that the equations remain invariant for
some fixed !.x/ D !0.x/ restricts the gauge parameters "˝.x/ to the parameters
"˝gl .x/ obeying the conditions

ı!0.x/ D 0 �! D0"
˝
gl .x/ D 0 ; D0 WD d C !0 :

SinceD2
0 D 0, "˝gl .x/ is reconstructed (locally) in terms of "˝gl .x0/ at any x0. "˝gl .x0/

are the global symmetry parameters of the equationD0C .x/ D 0.
Alternatively, one can write a solution in the pure gauge form

!0.x/ D g�1.x/dg.x/ ; C .x/ D g�1.x/C ; "gl.x/ D g�1.x/�g.x/ :

For g.x0/ D 1 this gives C D C .x0/ and � D "gl.x0/.

9.5.2 Massless Scalar Field Unfolded

Minkowski space is described by a flat Poincaré-connection !.x/ D ea.x/Pa C
1
2
!ab.x/Mab. In Cartesian coordinates ea.x/ D �a and !ab D 0.

Introduce an infinite set of zero-forms, which are traceless symmetric tensors

Ca1:::an .x/ D C.a1:::an/.x/ ; �bcCbca3:::an .x/ D 0 : (9.6)

The unfolded system of equations equivalent to the Klein–Gordon equation has the
form

dCa1:::an .x/ D �bCa1:::anb.x/ : (9.7)

Since the fields Ca1:::an .x/ are symmetric while �b ^ �c D ��c ^ �b , the system
(9.7) is formally consistent. (Equivalently, the covariant derivative associated with
the Eq. (9.7) rewritten in the form (9.4) is flat.)

The first two equations imply

@aC.x/ D Ca.x/ ; @aCb.x/ D Cab.x/ �! Cab.x/ D @a@bC.x/ :

Since Cab.x/ is traceless this implies

�C.x/ D 0 : (9.8)

All other equations express higher tensor components via higher derivatives of the
scalar field

Ca1:::an .x/ D @a1 : : : @anC.x/ : (9.9)
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This formula explains the meaning of Ca1:::an .x/ as a basis of the space of all
on-mass-shell nontrivial derivatives of C.x/. It should be noted that the space of
Ca1:::an .x/ is analogous (in some sense dual) to the space of single-particle states.
Via Eq. (9.7) the set of fields Ca1:::an .x/ at any given x D x0 determines C.x/ in
some neighborhood of x0, thus providing a locally complete set of “initial data”.

9.5.3 Any d

From the unfolded form of the massless scalar field equations it follows that the con-
formal HS algebra h in d dimensions is the algebra of linear transformations of the
infinite-dimensional space V of various traceless symmetric tensors C;Ca; Cab : : :,
i.e. h D gl.V /. Since the space V is infinite dimensional, such a definition is not
fully satisfactory, requiring a more precise definition of the appropriate class of
operators. In practice, the idea is that the basis operators of the conformal HS algebra
h should reproduce the HS symmetry transformations represented by finite-order
differential operators.

A careful definition of hwas given by Eastwood in [33] by different methods. As
shown in [32], the construction for d D 3 significantly simplifies in the framework
of the spinorial formalism. Since this formulation is most relevant in the context of
the AdS4=CFT3 HS holography we explain it in some more detail.

9.6 Conformal HS Algebra in d D 3

9.6.1 3d Multispinors

Convenience of the language of spinors in 3d theories is due to the following well-
known isomorphisms of the 3d Lorentz algebra: o.2; 1/ � sp.2;R/ � sl2.R/.
Three dimensional spinors in Minkowski signature are real

��˛ D �˛ ; ˛ D 1; 2 :

The sp.2;R/ invariant tensor �˛ˇ D ��ˇ˛ relates lower and upper indices

�˛ D �˛ˇ�ˇ ; �˛ D �ˇ�ˇ˛ :

Because a two-by-two antisymmetric matrix is unique up to a factor, the antisym-
metrization of 3d spinor indices is equivalent to their contraction

A˛;ˇ � Aˇ;˛ D �˛ˇA
;
 :

As a result, irreducible modules of the Lorentz algebra are represented by various
totally symmetric multispinorsA˛1:::˛n . As a consequence, rank-k traceless symmet-
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ric tensors in the tensor notations are equivalent to the rank-2k totally symmetric
multispinors

Aa1:::am � A˛1:::˛2m ; Abba3:::am D 0 :

(The reader can compare the number of independent components of the both
objects).

The explicit relation between the two formalisms is established with the help of
the 2 � 2 real symmetric matrices �n˛ˇ

A˛ˇ D �n˛ˇAn ; �n˛ˇ D �nˇ˛ :

9.6.2 Spinorial Form of 3d Massless Equations

In d D 3, the space V of all traceless symmetric tensors is equivalent to the space
of even functions of the commuting spinor variable y˛

C.yjx/ D
1X
nD0

C ˛1:::˛2n .x/y˛1 : : : y˛2n :

In these terms, the unfolded equations for a massless scalar take the form

�˛ˇ
�

@

@x˛ˇ
C @2

@y˛@yˇ

�
C.yjx/ D 0 (9.10)

with C.�yjx/ D C.yjx/. The same equation with odd C.�yjx/ D �C.yjx/
describes a 3d massless spinor field C˛.x/ D @

@y˛
C.yjx/

ˇ̌
ˇ
yD0 [32].

9.6.3 3d HS Symmetry

The 3d bosonic conformal HS algebra is the algebra of various differential operators
�.y; @

@y
/ obeying

�.�y;� @

@y
/ D �.y; @

@y
/ :

The transformation law is

ıC.yjx/ D "gl.y;
@

@y
jx/C.yjx/ ; (9.11)
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where

"gl.y;
@

@y
jx/ D exp



�x˛ˇ @2

@y˛@yˇ

�
�.y;

@

@y
/ exp



x˛ˇ

@2

@y˛@yˇ

�
: (9.12)

We leave it to the reader to check that this transformation indeed maps a solution
of (9.10) to a solution. For any polynomial �.y; @

@y
/, �gl.y;

@
@y
jx/ is polynomial as

well. �gl.y;
@
@y
/ provides the generating function for parameters of the global HS

transformations.
The 3d conformal algebra sp.4/ � o.3; 2/ is a subalgebra of the HS conformal

algebra with the generators

P˛ˇ D @2

@y˛@yˇ
; K˛ˇ D y˛yˇ ;

M˛ˇ D y˛ @

@yˇ
C yˇ @

@y˛
; D D y˛ @

@y˛
C 1 : (9.13)

It is not difficult to check how formula (9.11) reproduces the standard conformal
transformations for massless scalar and spinor in three dimensions.

9.6.4 Weyl Algebra and Star Product

The Weyl algebra An is the associative algebra of polynomials of oscillators OYA
obeying the commutation relations

Œ OYA ; OYB� D 2iCAB ; A;B; : : : D 1; : : : 2n ; CAB D �CBA (9.14)

with a nondegenerateCAB. Taking into account that

OYA D
 
y˛

i @

@yˇ

!

obey the Heisenberg commutation relations (9.14), we conclude that the 3d

conformal HS algebra (to be identified with the AdS4 HS algebra) is the Lie algebra
associated with the even part of the Weyl algebra A2.

In practice, it is convenient to replace any operator

Of . OY / D
1X
nD0

1

nŠ
f A1:::An OYA1 : : : OYAn
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with symmetric f A1:::An by its Weyl symbol f .Y / which is the function of
commuting variables Y A (Y AY B D Y BY A), that has the same power series
expansion

f .Y / D
1X
nD0

1

nŠ
f A1:::AnYA1 : : : YAn :

The Weyl star product is defined by the rule that .f � g/.Y / is the symbol of
Of . OY / Og. OY / : In particular, this implies

ŒYA; YB�� D 2iCAB ; Œa ; b�� D a � b � b � a :

One can also see that

fYA ; f .Y /g� D 2YAf .Y / ; ŒYA ; f .Y /�� D 2i @

@Y A
f .Y / ;

where

Y A D CABYB :

The star product is concisely described by the Weyl–Moyal formula

.f1 � f2/.Y / D f1.Y / exp Œi
 �
@A
�!
@BCAB� f2.Y / ; @A WD @

@YA
; (9.15)

which can be proven using the Campbell–Hausdorff formula for expJA OYA.
By its definition, the star product (9.15) is associative .f � g/ � h D f � .g � h/

and regular in the sense that the star product of any two polynomials of Y is a
polynomial.

The star product also admits the following useful integral representation

.f1 � f2/.Y / D 1

�2M

Z
dSdT exp.�iSATBC AB/f1.Y C S/ f2.Y C T / :

9.7 HS Symmetry in AdS4

9.7.1 Spinor Language in Four Dimension

The HS theory in four dimensions is most naturally formulated in terms of two-
component spinors which language is closely related to the twistor theory. Here the
key fact is that 2�2 D 4. Minkowski coordinates are represented by 2�2 Hermitian
matrices
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Xn ) X˛ P̨ D
3X

nD0
Xn�˛ P̨

n ; �˛ P̨
n D .I ˛ P̨ ; E�˛ P̨ / ;

where I ˛ P̨ is the unit matrix and E�˛ P̨ are Pauli matrices. ˛; ˇ; : : : D 1; 2, P̨ ; P̌; : : : D
1; 2 are two-component spinor indices.

In these terms

det jX˛ P̨ j D .X0/2 � .X1/2 � .X2/2 � .X3/2 :

This relation establishes the well-known isomorphism for the four-dimensional
Lorentz algebra sl.2;C/ � o.3; 1/.

The dictionary between tensors and multispinors is provided by the �-matrices

�a˛ P̨ ; �ab
˛ˇ D �Œa˛ P̨�

b�

ˇ
P̨ ; N�ab

P̨ P̌ D �Œa˛ P̨�
b�˛ P̌ ;

where the two-component indices are raised and lowered by the two-by-two
antisymmetric form "˛ˇ,

y˛ D "˛ˇyˇ ; y˛ D yˇ"ˇ˛ ; "˛
"
ˇ
 D ıˇ˛ ; "12 D "12 D 1 :

These relations show that a pair of dotted and undotted indices is equivalent to a
vector index, while the pairs of symmetrized indices of the same type are equivalent
to the second-rank antisymmetric tensors.

9.7.2 AdS4 HS Algebra

The identification of the 3d conformal HS symmetry with the AdS4 HS symmetry
implies that the global symmetry of the most symmetric vacuum of the bosonic
HS theory is represented by the Lie algebra associated with the even part of the
Weyl algebra A2. To have 4d Lorentz symmetry manifest, it is most convenient to
realize A2 as the algebra of mutually conjugate operators y˛ and Ny P̨ that obey the
star-product commutation relations

Œy˛ ; yˇ�� D 2i"˛ˇ ; Œ Ny P̨ ; Ny P̌�� D 2i" P̨ P̌ :

Historically, the AdS4 HS algebra was originally found in [34] by different methods
from the analysis of the HS fields in AdS4 while its relation to the Weyl algebra was
found in [35].

This realization is convenient for the analysis of the properties of the HS algebra.
Spin-s generators are represented by the homogeneous polynomials Ts.y; Ny/ of
degree 2.s � 1/. The commutation relations have the following structure
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ŒTs1 ; Ts2 � D Ts1Cs2�2 C Ts1Cs2�4 C : : :C Tjs1�s2jC2 :

Once a spin s > 2 appears, the HS algebra contains an infinite tower of higher
spins. Indeed, since ŒTs; Ts� gives rise to T2s�2, further commutators then lead to
higher and higher spins. Note also that ŒTs; Ts� contains the generators T2 of the
AdS4 algebra o.3; 2/ � sp.4/.

The HS gauge fields in four dimensions are the one-forms

!.Y jX/ D
1X

n;mD0

1

2nŠmŠ
!˛1:::˛n ; P̨1::: P̨m.X/y

˛1 : : : y˛n Ny P̨1 : : : Ny P̨m ;

where YA D .y˛; Ny P̨ / are commuting spinor variables and X are local coordinates
of AdS4. The HS curvatures and gauge transformations are

R.Y jX/ D d!.Y jX/C !.Y jX/ � !.Y jX/ ; (9.16)

ı!.Y jX/ D D�.Y jX/ D d�.Y jX/C Œ!.Y jX/ ; �.Y jX/�� : (9.17)

The symmetry algebra of a single boundary scalar field called hu.1; 0j4/ contains
every spin in one copy. Conventional symmetries are associated with spins s 	
2, forming finite-dimensional subalgebras of the HS algebra. For example, the
maximal finite-dimensional subalgebra of hu.1; 0j4/ is u.1/ ˚ o.3; 2/ where u.1/
is associated with the unit element of the star-product algebra.

More generally, there are three series of 4d HS superalgebras, namely
hu.n;mj4/, ho.n;mj4/ and husp.2n; 2mj4/. Spin-one fields of the respective HS
theories are the Yang–Mills fields of the Lie groupsG D U.n/�U.m/,O.n/�O.m/
and Usp.2n/ � Usp.2m/, respectively. Fermions belong to the bifundamental
modules of the two components ofG. All odd spins are in the adjoint representation
of G. Even spins carry the opposite symmetry second rank representation of G.
Namely, in the hu.n;mj4/ HS theories they are still in the adjoint representation
of U.n/ � U.m/, while in the ho.n;mj4/ and husp.2n; 2mj4/ HS theories even
spins carry rank-two symmetric representation of O.n/ �O.m/ and antisymmetric
representation of Usp.2n/�Usp.2m/, respectively. The ho.1; 0j4/ HS theory is the
minimal one only containing even spins s D 0; 2; 4; 6; : : :.

The HS theories have the important feature that their particle spectrum always
contains a colorless graviton and a colorless scalar which are both invariant under
the spin-one Yang–Mills internal symmetries. It is interesting to note that the
presence of the colorless scalar field in the spectrum, which is a standard ingredient
of the modern cosmological models, is one of the predictions of the HS symmetry.
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9.8 Free HS Fields in Four Dimension

9.8.1 Vacuum Solution

Whatever form they have, nonlinear HS field equations will be formulated in terms
of the HS curvatures. Hence, any connection !.Y jX/ that has zero curvature solves
the nonlinear HS equations of motion. Such solutions include in particular the AdS4
connection because AdS4 is described by the flat gravitational connections of sp.4/
which is a subalgebra of the HS algebra.

The AdS4 vacuum solution solves the equations

R0 D 0

for !0 2 sp.4/ � o.3; 2/ that has the form

!0.Y jX/ D 1

4i
.w˛ˇ.X/y˛yˇ C Nw P̨ P̌

.X/ Ny P̨ Ny P̌ C 2	h˛ P̌
.X/y˛ Ny P̌/ :

We leave it to the reader to check that these equations indeed describe AdS4.
Fluctuations describe small deviations of all massless fields from the vacuum

! D !0 C !1 ; R1 D D0!1 WD d!1 C Œ!0 ; !1�� :

Since we know free massless field equations, we anticipate them to result from the
linearization of the full nonlinear system. The key question is in which form the free
massless field equations will follow from the full nonlinear system? The appropriate
form is provided by the Central on-shell theorem.

9.8.1.1 Central on-Shell Theorem

The full unfolded system for the free massless fields of all spins can be formulated
in terms of the one-form !.Y jX/ and zero-form C.Y jX/ as follows [36]:

R1.Y j X/ D H P̨ P̌ @2

@y P̨@y P̌C.0; y j X/CH˛ˇ @2

@y˛@yˇ
C.y; 0 j X/ ; (9.18)

QD0C.Y j X/ D 0 ; (9.19)

where

H˛ˇ D h˛ P̨ ^ hˇ P̨ ; H
P̨ P̌ D h˛ P̨ ^ h˛ P̌

are the basis two-forms in four dimension,
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R1.Y j X/ D Dad
0 !.Y j X/ ;

Dad
0 DDL�	h˛ P̌

 
y˛

@

@ Ny P̌
C @

@y˛
Ny P̌

!
; QD0DDLC	h˛ P̌

 
y˛ Ny P̌C @2

@y˛@ Ny P̌

!
;

and the Lorentz covariant derivative is

DLA D dX �
 
!˛ˇy˛

@

@yˇ
C N! P̨ P̌ Ny P̨

@

@ Ny P̌

!
:

Since the system of equations (9.18) and (9.19) contains the exhaustive infor-
mation about free massless fields, including all their dual formulations, it is called
Central on-shell theorem.

The pattern of Eqs. (9.18) and (9.19) is as follows. The gauge fields of different
spins are described by the homogeneous polynomials in Y

!s.�y; � NyjX/ D �2.s�1/!.y; NyjX/ :

The zero-forms associated with the spin s obey

C s.�y; ��1 NyjX/ D �˙2sC.y; NyjX/ :

This implies that a set of one-forms associated with a massless spin s contains
a finite number of components while a set of zero-forms contains an infinite
number of components. Altogether, these fields describe an infinite set of spins
s D 0; 1=2; 1; 3=2; 2; 5=2 : : :

!s
˛1:::˛n ; P̌

1::: P̌m W nCm D 2.s � 1/ ; C s

˛1:::˛n ; P̌1::: P̌m W jn �mj D 2s :
(9.20)

The zero-formsC.Y jX/ encode the gauge invariant HS curvatures and spin-zero
matter fields along with all their derivatives that remain non-zero on the dynamical
field equations. Dynamical fields include the frame-like fields !s

˛1:::˛s�1 ; P̌1::: P̌s�1 and

the scalar C.0; 0jx/. The frame-like fields reduce to the Fronsdal fields upon gauge
fixing of the Lorentz-like Stueckelberg gauge symmetries in the linearized HS gauge
transformation (9.17).

All other fields from the list (9.20) are expressed by Eqs. (9.18) and (9.19) via
higher derivatives of the dynamical fields. The derivatives come in the dimensionless
combination

	�1 @
@x
; 	2 D ��

with the inverse radius 	 of the background AdS space. As a result, the HS
interactions, that contain higher derivatives, turn out to be nonanalytic in the
cosmological constant� of the background AdS space.
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9.8.1.2 Examples

In the spin-zero sector, the Central on-shell theorem just reproduces the unfolded
equations for a scalar field. Indeed, the set of all multispinors C0

˛1:::˛n ; P̌1::: P̌n with

the equal numbers of dotted and undotted spinor indices provides the spinorial
realization of the set of all symmetric traceless tensors Ca1:::an , Cb

ba3:::an D 0 in
four dimension.

Leaving the derivation of the Maxwell equations in the spin-one sector to the
reader, we consider the case of spin two. Here the gauge fields include the Lorentz
connection !˛ˇ; N! P̨ P̌ and the frame field !˛; P̌ . The zero-forms C˛1˛2˛3˛4.X/ and
NC P̨1 P̨2 P̨3 P̨4 .X/ describe the Weyl tensor in terms of two-component spinors. Higher

components C s

˛1:::˛n ; P̌
1::: P̌m with jn �mj D 4 describe all its non-trivial derivatives.

Consider first Eq. (9.18). The equation R˛; P̌ D 0 is the usual zero-torsion con-
dition that expresses the Lorentz connection via the vierbein. The other equations
have the form

R˛ˇ D H
ıC˛ˇ
ı ; R P̨ P̌ D NH P
 Pı NC P̨ P̌ P
 Pı : (9.21)

These imply that a nonzero part of the Riemann tensor belongs to the Weyl tensor.
This is equivalent to saying that the Ricci tensor is zero which, in turn, is equivalent
to the Einstein equations in the vacuum.

In the tensorial language the same equations read as

R��
a D 0 ; R��

ab D e�ce�dCcd;ab ; Cab;
b
c D 0 : (9.22)

This implies the Einstein equations sinceR�� D R�� D 0. In addition, the system
(9.22) implies that Ccd;ab coincides with the Weyl tensor.

Analogously, the Central on-shell theorem for higher spins imposes the Fronsdal
equations R�1:::�s D 0 and expresses the generalized HS Weyl tensors in terms of
derivatives of the Fronsdal fields.

9.9 Nonlinear Higher-Spin Theory

In this section we briefly summarize the construction of nonlinear HS equations.
The reader not interested in technical details is advised to go directly to Sect. 9.9.4.

9.9.1 Idea of Construction

The idea is to look for nonlinear HS field equations in the form of a nonlinear
deformation of the Central on-shell theorem. The first step is to replace the
linearized HS curvatures and covariant derivatives by the full non-Abelian ones:
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R.y; y j X/ D d!.y; y j X/C !.y; y j X/ � !.y; y j X/ ;
QDC.y; y j X/ D dC.y; y j X/C!.y; y j X/�C.y; y j X/�C.y; y j X/�!.y;�y j X/

trying to find a deformation of the form

R.Y j X/ D H P̨ P̌ @2

@y P̨@y P̌ C.0; y j X/CH˛ˇ @2

@y˛@yˇ
C.y; 0 j X/C : : : ;

QDC.Y j X/C : : : D 0 ;

where further nonlinear corrections have to be determined from the formal consis-
tency of the HS equations. Having the form of the generalized Bianchi identities,
the consistency of the HS equations also guarantees their gauge invariance.

Field equations of such a form are called unfolded which means that all
dynamical fields are differential forms and that the exterior derivative of any field
is expressed via the exterior product of the fields themselves. As discussed in
some more detail in Sect. 9.10, this form of dynamical equations is useful in many
respects.

Being possible in a few first orders, the straightforward construction of the
nonlinear deformation quickly gets complicated. The trick is to find a larger algebra
g0 such that an appropriate substitution

! ! W D ! C !C C !C2 C : : :

into W 2 g0 reconstructs nonlinear equations via the flatness condition

dW CW ^W D 0 :

The problem is to find appropriate restrictions on W that reconstruct the nonlinear
HS equations in all orders.

This is achieved via the doubling of spinors

!.Y jX/ �! W.ZIY jX/ ; C.Y jX/ �! B.ZIY jX/

accompanied by the equations that determine the dependence on the additional
spinorial variables ZA in terms of the “initial data”

!.Y jX/ D W.0IY jX/ ; C.Y jX/ D B.0IY jX/ ;

where !.Y jX/ and C.Y jX/ are the HS fields of the Central on-shell theorem. To
rewrite the evolution along the additional variables ZA covariantly, it is useful to
introduce a connection S.Z; Y jX/ D dZASA in the ZA-space.
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9.9.2 HS Star Product

Nonlinear HS field equations are formulated in terms of the specific star product

.f � g/.ZIY / D 1

.2�/4

Z
d4U d4V exp ŒiU AV BCAB�

�f .Z C U IY C U /g.Z � V IY C V / ; (9.23)

where CAB D ."˛ˇ; N" P̨ P̌/ is the 4d charge conjugation matrix and UA, V B are real
integration variables. The normalization is such that 1 is a unit element of the star-
product algebra, i.e. f � 1 D 1 � f D f : The star product (9.23) is associative and
provides a particular realization of the Weyl algebra since

ŒYA; YB�� D �ŒZA;ZB�� D 2iCAB ŒYA;ZB�� D 0 : (9.24)

It results from the normal ordering with respect to the elements

bA D 1

2i
.YA �ZA/ ; aA D 1

2
.YA CZA/ ;

which satisfy

ŒaA; aB �� D ŒbA; bB�� D 0 ; ŒaA; bB�� D CAB

and can be interpreted as creation and annihilation operators. In fact, the star product
(9.23) describes the normal ordering with respect to the oscillators aA and bA as is
most evident from the following consequences of (9.23):

bA � f .b; a/ D bAf .b; a/ ; f .b; a/ � aA D f .b; a/aA :

An important property of the star product (9.23) is that it admits the inner Klein
operator

% D exp iZAY
A

which behaves as .�1/N ; where N is the spinor number operator. One can easily
see that

% � % D 1;

% � f .ZIY / D f .�ZI �Y / � %

and

.% � f /.ZIY / D exp iZAY A f .Y IZ/ :
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With respect to the decomposition of Majorana spinors into two-component
spinors, YA D .y˛; Ny P̨ /, Ny P̨ D .y˛/�, the left and right inner Klein operators

� D exp iz˛y
˛ ; N� D exp i Nz P̨ Ny P̨ (9.25)

act analogously on the undotted and dotted spinors, respectively,

� � f .z; NzIy; Ny/ D f .�z; NzI �y; Ny/ � � ; N� � f .z; NzIy; Ny/ D f .z;�NzIy;� Ny/ � N� ;

� � � D N� � N� D 1 ; � � N� D N� � � :

9.9.3 The Full Nonlinear System

As shown in [37], the equations of motion of the four-dimensional HS theory can
be formulated in terms of the three types of fields

W D dX�W�.Z; Y IKjX/ ; S D dZASA.Z; Y IKjX/ ; B.Z; Y IKjX/ :

The fieldsW and S are, respectively, one-forms in the four-dimensional space-time
with the coordinates X� and spinor space with the coordinates ZA. The spinorial
variablesZA and YA are commuting while dZA are anticommuting differentials

ZAZB D ZBZA ; YAYB D YBYA ; ZAYB D YBZA ; dZAdZB D �dZBdZA :

dZA commute withZB and YB but anticommute with the anticommuting space-time
differentials dX�

dX�dX� D �dX�dX� ; dZAdX� D �dX�dZA :

K denotes a pair of Klein operatorsK D .k; Nk/ that obey the relations

k2 D Nk2 D 1 ; k Nk D Nkk ; (9.26)

kw˛ D �w˛k ; Nkw˛ D w˛ Nk ; k Nw P̨ D Nw P̨k ; Nk Nw P̨ D � Nw P̨ Nk (9.27)

for w˛ D .dz˛; z˛; y˛/, Nw P̨ D .d Nz P̨ ; Nz P̨ ; Ny P̨ /. The important difference between .k; Nk/
and .�; N�/ (9.25) is that the former anticommute with the respective differentials dz˛

and d Nz P̨ while the latter commute.
The system of nonlinear HS equations in d D 4 reads as [37]

dW D W �W ; (9.28)

dB D W � B � B �W ; (9.29)
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dS D W � S � S �W ; (9.30)

S � B D B � S ; (9.31)

S � S D �i.dZAdZA C dz˛dz˛F�.B/ � k� C d Nz P̨d Nz P̨ NF�.B/ � Nk N�/ : (9.32)

F�.B/ in Eq. (9.32) is some star-product function of the field B . The simplest case
of the linear functions

F�.B/ D �B ; NF�.B/ D N�B ;

where � is some phase factor (its absolute value can be absorbed into a redefinition
of B), leads to the class of pairwise nonequivalent nonlinear HS theories. The cases
of � D 1 and � D exp i�

2
are particularly interesting, corresponding to the so called

A and B HS models. These two cases are distinguished by the property that they
respect parity [25].

Expanding all fields in powers of k and Nk we obtain for U D W;S;B

U.Z; Y IKjX/ D
1X

i;jD0
ki NkjUij.Z; Y jX/ :

Since the relations (9.26) and (9.27) are invariant under the reflections k ! �k
and Nk ! � Nk, and taking into account that the r.h.s. of Eq. (9.32) contains k and Nk
explicitly, it follows that the system (9.28)–(9.32) is invariant under the following
involutive map

�.W.Y;ZIKjX//D W.Y;ZI �KjX/ ; �.S.Y;ZIKjX//DS.Y;ZI �KjX/ ;
�.B.Y;ZIKjX//D � B.Y;ZI �KjX/ :

As a result, the full system of fields decomposes into �-even and �-odd fields.
Clearly, the �-even fields form a subsystem of the full system while the �-odd
fields can be consistently truncated away. This truncation is applied in most of
applications. The dynamical role of the �-even and �-odd fields is different.

The �-even fields we call dynamical since they describe massless fields of various
spins. These areW dyn

ii , Sdyn
ii and Bdyn

i 1�i . Each of them appears in two copies because
i D 1; 2. As shown in [38], this doubling is inevitable in presence of fermions.

Each member of the infinite set of the �-odd fields describes at most a finite num-
ber of degrees of freedom. To stress that they carry no local degrees of freedom, they
were called auxiliary in [37]. It is also appropriate to call them moduli fields since
the finite number of degrees of freedom carried by each of these fields can be inter-
preted as a kind of coupling constants of the theory. In particular, this was demon-
strated in [39] where it was shown that the mass parameter of the matter fields in the
3d HS theory results from a non-zero vacuum value of one of the moduli fields. The
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moduli fields include W mod
i 1�i , Smod

i 1�i and Bmod
ii . Truncating away the moduli fields

greatly reduces the moduli space of the theory. In particular, the moduli responsible
for the massive boundary deformation can be argued to belong to this sector.

The perturbative analysis performed around the following vacuum solution

B0 D 0 ; S0 D dZAZA ; W0 D 1

2
!AB
0 .X/Y�Y� ;

whereW0 obeys

dW0 CW0 ? W0 D 0

so that !AB
0 .X/ describes the AdS4, reproduces the Central on-shell theorem in the

first-order [37]. This means that the nonlinear system (9.28)–(9.32) indeed provides
a nonlinear deformation of the free equations of massless fields of all spins. Note
that the specific form of the star product (9.23) is crucial for this analysis.

The HS equations exhibit manifest gauge invariance under the gauge transforma-
tions

ıW D d"C ŒW ; "�� ; ıS D ŒS ; "�� ; ıB D ŒB ; "�� ; " D ".ZIY IKjX/ :

The nonlinear HS equations are formally consistent and regular: perturbatively,
there are no divergences due to star products of the non-polynomial elements
resulting from the inner Klein operators � and N� [40].

9.9.4 Properties of HS Interactions

Let us briefly discuss some of the most important properties of the nonlinear HS
equations.

First of all, HS interactions contain higher derivatives. This property is closely
related to nonanaliticity of the HS interactions in the cosmological constant
� D ��2 which appears in the dimensionless combination @ where  is the AdS
radius while @ denotes the space-time derivative. This has the effect that background
HS gauge fields contribute to the higher-derivative terms in the evolution equations.
As a result, the evolution is determined mostly by the HS fields rather than by the
metric. This provides the realization of the anticipated property that Riemannian
geometry is not an appropriate tool in the HS theory.

In the HS theory, HS fields source lower-spin fields in particular via the ! � !-
like terms. Other way around, lower-spin fields source HS fields via the C2 terms.
In particular, gravity sources the HS fields and vice-versa. Among other things this
implies that the Einstein gravity cannot be obtained as a consistent truncation of the
HS theory.

A remarkable feature of the HS equations is that their nontrivial part is only
represented by Eq. (9.32) which does not contain the space-time derivative d . This
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suggests that not only Riemannian geometry but even usual coordinates do not play
a fundamental role in the system. In fact, this is a general property of unfolded
dynamical equations the particular case of which is represented by the nonlinear
equations (9.28)–(9.32).

9.10 Unfolded Dynamics

9.10.1 General Setup

The unfolded form of dynamical equations provides a covariant generalization of
the first-order form of differential equations

Pqi .t/ D 'i .q.t// ;

which is convenient in many respects. In particular, initial values can be given in
terms of the values of variables qi .t0/ at any given point t0. As a result, in the
first-order formulation, the number of degrees of freedom equals to the number of
dynamical variables.

Unfolded dynamics is a multidimensional generalization achieved via the
replacement of the time derivative by the de Rham derivative

@

@t
! d D ��@�

and the dynamical variables qi by a set of differential forms

qi .t/! W ˝.�; x/ D ��1 : : : ��pW ˝
�1:::�p

.x/

to reformulate a system of partial differential equations in the first-order covariant
form

dW˝.�; x/ D G˝.W.�; x// : (9.33)

Here G˝.W / are some functions of the “supercoordinates”W ˝

G˝.W / D
X
n

f ˝
�1:::�nW

�1 : : : W �n :

Since d2 D 0, at d > 1 the functions G�.W / cannot be arbitrary but have to obey
the compatibility conditions

G�.W /
@G˝.W /

@W �
� 0 : (9.34)
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(Recall that all products of the differential forms W.�; x/ are the wedge products
due to anticommutativity of �� .) Let us stress that these are conditions on the
functionsG�.W / rather than on W .

The idea of the unfolded formulation was put forward in the paper [40] where it
was realized that the full system of nonlinear equations can be searched in the form
(9.33) as a deformation of the Central on-shell theorem.

As a consequence of the compatibility conditions (9.34) the system (9.33) is
manifestly invariant under the gauge transformation

ıW ˝ D d"˝ C "� @G
˝.W /

@W �
;

where the gauge parameter "˝.x/ is a .p˝ � 1/-form if W ˝ is a p˝-form. Strictly
speaking, this is true for the class of universal unfolded systems in which the
compatibility conditions (9.34) hold independently of the dimension d of space-
time, i.e. (9.34) should be true disregarding the fact that any .d C 1/-form is zero.
Let us stress that all unfolded systems, which appear in HS theories including those
considered in these lectures, are universal.

The unfolded formulation can be applied to the description of invariant function-
als of the system in question. Here it is useful to distinguish between the off-shell
and on-shell unfolded dynamical systems.

As demonstrated in Sect. 9.5.2, most of the relations contained in unfolded
equations impose constraints expressing some new fields in terms of derivatives
of the old ones. In the off-shell case the unfolded equations just express all fields
in terms of derivatives of some ground fields, imposing no differential restrictions
on the latter. In the scalar-field example of Sect. 9.5.2, to make the system off-shell
one should relax the tracelessness condition in (9.6). In this case, the pattern of
the unfolded system (9.7) is given by the set of constraints (9.9) which express
the higher tensors Ca1:::an .x/ via derivatives of the ground scalar field C.x/. The
on-shell unfolded equations not only express all fields in terms of derivatives of the
ground fields, but also impose differential restrictions on the latter. In the scalar-field
example this is the Klein–Gordon equation (9.8).

As shown in [41], the variety of invariant functionals associated with the unfolded
equations (9.33) is described by the cohomology of the operator

Q D G˝ @

@W ˝
; (9.35)

which obeys

Q2 D 0
as a consequence of (9.34). By virtue of (9.33),Q-closed p-form functionsLp.W /
are d -closed, giving rise to the gauge invariant functionals

S D
Z
˙p

Lp :
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In the off-shell case they can be used to construct invariant action functionals while
in the on-shell case they describe conserved charges. (For more detail and examples
see [41].) Also, in the on-shell case, S can play a róle of the Hamilton–Jacobi action
which becomes a functional of boundary conditions in the context of holographic
duality.1

9.10.2 Properties

The unfolded formulation of partial differential equations has a number of remark-
able properties.

• First of all, it has general applicability: every system of partial differential
equations can be reformulated in the unfolded form.

• Due to using the exterior algebra formalism, the system is invariant under
diffeomorphisms, being coordinate independent.

• Interactions can be understood as nonlinear deformations of G˝.W /.
• Degrees of freedom are represented by the subset of zero-forms CI .x0/ 2
fW ˝.x0/g at any x D x0. This is analogous to the fact that qi .t0/ describe
degrees of freedom in the first-order form of ordinary differential equations. The
zero-forms CI .x0/ realize an infinite-dimensional module dual to the space of
single-particle states of the system. In the HS theory it is realized as a space of
functions of auxiliary variables like C.y; Nyjx0/. This space is an analogue of the
phase space in the Hamiltonian approach.

• It is worth to mention that the same property of the unfolded dynamics provides a
tool to control unitarity in presence of higher derivatives via the requirement that
the space of zero-forms like C.y; Ny/ admits a positive-definite norm preserved
by the unfolded equations in question.

The above list of remarkable properties of the unfolded formulation is far from
being complete. In particular, the unfolded formulation admits a nice interpretation
in terms of Lie algebra cohomology (for more detail see [42]), L1 algebra [43],Q-
manifolds and many more (for more detail see e.g., [41,44] and references therein).
The most striking feature of this formulation is however that it makes it possible to
describe one and the same dynamical system in space-times of different dimensions.

9.11 Space-Time Metamorphoses

Unfolded dynamics exhibits independence of the “world-volume” space-time with
coordinates x. Instead, geometry is encoded by the functionsG˝.W / in the “target
space” of fields W ˝ . Indeed, the universal unfolded equations make sense in any

1I am grateful to Ioannis Papadimitriou for the stimulating discussion of this point.
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space-time independently of a particular realization of the de Rham derivative d .
For instance one can extend space time by adding additional coordinates z

dW˝.x/DG˝.W.x// ; x ! X D .x; z/ ; dx ! dX D dx C dz ; dzD dzu @

@zu
:

The unfolded equations reconstruct the X -dependence in terms of values of the
fields W ˝.X0/ D W ˝.x0; z0/ at any X0. Clearly, to take W ˝.x0; z0/ in space MX

with coordinates X0 is the same as to take W ˝.x0/ in the space Mx � MX with
coordinates x.

The problem becomes most interesting provided that there is a nontrivial vacuum
connection along the additional coordinates z. This is in particular the case of
AdS=CFT correspondence where the conformal flat connection at the boundary is
extended to the flat AdS connection in the bulk with z being a radial coordinate of
the Poincaré type.

Generally, the unfolding can be interpreted as some sort of a covariant twistor
transform

Here W ˝.Y jx/ are functions on the “correspondence space” C with local coordi-
nates Y; x. The space-timeM has local coordinates x. The twistor space T has local
coordinates Y .

The unfolded equations reconstruct the dependence of W ˝.Y jx/ on x in terms
of the function W ˝.Y jx0/ on T at some fixed x0. The restriction of W ˝.Y jx/ or
some its Y -derivatives to Y D 0 gives dynamical fields !.x/ in M which, in the
on-shell case, solve their dynamical field equations. Hence, similarly to the Penrose
transform (see [45] and references therein), unfolded equations map functions on T
to solutions of the dynamical field equations in M .

In these terms, the holographic duality can be interpreted as the duality between
different space-times M that can be associated with the same twistor space. This
phenomenon has a number of interesting realizations.

9.11.1 AdS4=CFT3 HS Holography

The AdS4=CFT3 HS holography [22] relates the HS gauge theory in AdS4 to the
quantum theory of conformal currents in three dimensions. To see how it works, let
us first discuss the unfolded equations for free massless fields and currents on the
3d boundary.
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The unfolded equations for conformal massless fields in three dimensions are
[32, 46]

.
@

@x˛ˇ
˙ i @2

@y˛@yˇ
/Cj̇ .yjx/ D 0 ; ˛; ˇ D 1; 2 ; j D 1; : : :N :

The equations for 3d conformal conserved currents have the form of rank-two
equations [47]


@

@x˛ˇ
� @2

@y.˛@uˇ/

�
J.u; yjx/ D 0 : (9.36)

J.u; yjx/ contains all 3d HS currents along with their derivatives.
Elementary 3d conformal currents, which are conformal primaries, contain

currents of all spins

J.u; 0jx/ D
1X
2sD0

u˛1 : : : u˛2sJ˛1:::˛2s .x/ ; QJ .0; yjx/ D
1X
2sD0

y˛1 : : : y˛2s QJ˛1:::˛2s .x/

along with the additional scalar current

J asym.u; yjx/ D u˛y
˛J asym.x/ :

Their conformal dimensions are

�J˛1:::˛2s .x/ D � QJ˛1:::˛2s .x/ D s C 1 �J asym.x/ D 2 :

The unfolded equations express all other components of J.u; yjx/ in terms
of derivatives of the primaries, also imposing the differential equations on the
primaries, which are just the conservation conditions

@

@x˛ˇ
@2

@u˛@uˇ
J.u; 0jx/ D 0 ; @

@x˛ˇ
@2

@y˛@yˇ
QJ .0; yjx/ D 0

for all currents except for the scalar ones that do not obey any differential equations.
The rank-two equation is obeyed by

J.u; y jx/ D
NX
iD1

C�
i .uC yjx/CC

i .y � ujx/ :

This simple formula gives the explicit realization of the HS conformal conserved
currents in terms of bilinear combinations of derivatives of free massless fields in
three dimensions.



256 M.A. Vasiliev

Generally, the rank-two fields and, hence conserved currents, can be interpreted
as bi-local fields in the twistor space. In this respect they are somewhat analogous to
space-time bi-local fields also used for the description of currents (see e.g [48, 49]
and references therein).

To relate 3d currents to 4d massless fields it remains to extend the 3d current
equation to the 4d massless equations. This is easy to achieve in the unfolded
dynamics via the extension of the 3d coordinates x˛ˇ to the 4d coordinates X˛ P̌ ,
extending the 3d equations to

 
@

@X˛ P̨ C
@2

@y˛@ Ny P̌

!
C.y; NyjX/ D 0 : (9.37)

These are just the free unfolded equations for 4d massless fields of all spins in
Minkowski space, i.e. at � D 0.

The analysis in AdS4, which is also simple, is performed analogously. In this
case, x˛ˇ D 1

2
.X˛ˇ C Xˇ˛/ are boundary coordinates, while z�1 D X˛ˇ�˛ˇ is the

radial coordinate. (For more detail see [29].) At the non-linear level, the full HS
theory in AdS4 turns out to be equivalent to the theory of 3d currents of all spins
interacting through conformal HS gauge fields [29].

9.11.2 sp.8/ Invariant Setup

Another example of the application of unfolded dynamics is related to the sp.8/
extension of conformal symmetry in the theory of massless fields in four dimen-
sions. As was shown by Fronsdal [50], the tower of all 4d massless fields is sp.8/
symmetric. The sp.8/ symmetry extends conformal symmetry su.2; 2/ � sp.8/ that
acts on every massless field. The generators in sp.8/=su.2; 2/mix fields of different
spins in the tower of massless fields of all spins 0 	 s <1.

Indeed, Eq. (9.11), that describe gauge invariant combinations of massless fields,
are covariant constancy conditions for 0-forms C.y; Nyjx/ valued in the space of
functions of spinor variables y˛ and Ny P̨ . Hence, symmetries of these equations
contain sp.8/ realized by bilinears (9.13) with indices ˛ taking four values.

Fronsdal has shown that the space-time M4 appropriate for geometric realization
of Sp.8/ is ten-dimensional with local coordinates XAB D XBA, where A D
.˛; P̨ / D 1; 2; 3; 4. Applying the construction of Sect. 9.10, it is easy to derive the
equations for massless fields in M4.

9.11.2.1 From Four to Ten

Indeed, unfolded 4d massless equations can be easily uplifted to M4 as follows
[46]:
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dXAB.
@

@XAB
C @2

@Y A@Y B
/C.Y jX/ D 0 ; A;B D 1; : : : 4 ; (9.38)

where, for the sake of simplicity, the massless equations are presented in the
Cartesian-like coordinates. Note that to obtain the proper 	 ! 0 limit from
Eq. (9.11), it is necessary to rescale the spinor variables

y˛ ! 	
1
2 y˛ ; Ny P̨ ! 	

1
2 Ny P̨ (9.39)

before taking the limit.
If the indices A;B take just two values, Eq. (9.38) describe 3d massless fields

invariant under Sp.4/ which is the 3d conformal group [32, 46].
By the general argument in the beginning of Sect. 9.11, Eq. (9.38) describe the

same dynamics as the original massless field equations in 4d Minkowski space
because they consist of the usual 4d equations (9.37) for the coordinates X˛ P̌
supplemented with the equations describing the evolution along the additional
spinning coordinates X˛ˇ and X P̨ P̌ . The key question is what are independent
dynamical variables in M4? From (9.38) it is clear that these are the fields
C.0jX/ and Y ACA.0jX/. Indeed, all other components ofC.Y jX/ are expressed by
Eq. (9.38) via X -derivatives of C.0jX/ and Y ACA.0jX/. It turns out that C.0jX/
describes all 4d massless fields of integer spins while CA.0jX/ describes all 4d
massless fields of half-integer spins. So, C.0jX/ and CA.0jX/ serve as certain
hyperfields for the HS multiplets.

The nontrivial field equations in M4 are [46]

�
@2

@XAB@XCD
� @2

@XCB@XAD

�
C.X/ D 0 (9.40)

for bosons and
�

@

@XAB
CC .X/� @

@XCB
CA.X/

�
D 0 (9.41)

for fermions. These equations are interesting in many respects. First of all, they are
overdetermined. This is what makes it possible to describe the four-dimensional
massless fields by virtue of differential equations in the ten-dimensional space
M4. Another interesting feature is that Eqs. (9.40) and (9.41) contain no index
contraction and hence no metric tensor.

9.11.2.2 From Ten to Four

It is instructive to see how the usual space-time picture re-appears from the ten-
dimensional one. Remarkably, in this setup, the conventional four-dimensional
picture results from the identification of a concept of local event simultaneously
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with the metric tensor. Referring for more detail of the derivation to the original
paper [51], we just summarize the final results.

Time in MM is a parameter t along a time-like direction in M4 represented by
any positive-definite matrix T AB

XAB D T ABt :

Usual space in MM is identified with the space of local events at a given time.
Coordinates of the space of local events xn are required to have the property that
the differential equations in question admit “initial data” localized at any point of
space-time, i.e. represented by the ı-functions ı.xn�xn0 / with various xn0 . Since the
system of equations in question is overdetermined, the analysis of this issue is not
quite trivial. The final result is [51] that, for Eqs. (9.40),(9.41), the space of local
events in M4 is represented by a Clifford algebra with

XAB D xn
An CT BC

formed by matrices 
An B that obey

f
n ; 
mg D 2gnm ; (9.42)

where gnm is the spatial metric tensor of R3.
Thus, the three-dimensional space of the 4d Minkowski space appears as the

space R3 of local events. In this analysis, the metric tensor appears just after the
identification of coordinates that parametrize local events with the generators of
the Clifford algebra. In a certain sense, this construction is opposite to the original
Dirac’s construction where the 
 -matrices were introduced as a square root of the
metric tensor. Here, the metric tensor appears from the definition of the 
 -matrices
that represent local events.

Analogous analysis can be performed in some other dimensions. In particular in
[51–53] it was shown that Eq. (9.38) at M D 2; 4; 8; 16 describe free conformal
fields of all spins in d D 3; 4; 6; 10.

It should be noted that different sp.2M/-symmetric field equations in the same
space MM , like e.g. the higher-rank equations of [47], have spaces of local events
of different dimensions. The resulting picture is somewhat analogous to the brane
picture in String Theory allowing the co-existence of objects of different dimensions
in the same space. The difference is however that the “HS branes” in the sp.2M/

setup are not localized as a particular surface embedded into MM . Instead, different
choices of a representative surface is a matter of the gauge choice. This example
gives another manifestation of the general property that higher symmetries may
affect such fundamental concepts as local event and space-time dimension.
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9.12 HS Theory and Quantum Mechanics

Classical HS theory has several interesting links with quantum mechanics.
One is that unfolded dynamics in the spinor (twistor) formulation distinguishes

between positive and negative frequencies

� @

@XAB
˙ i @2

@Y A@Y B

�
C˙.Y jX/ D 0 : (9.43)

Indeed, since the time parameter t D 1
M
XABTAB is associated with any positive-

definite TAB, the sign in the exponential

C.X/ D CC.X/C C�.X/ ; C˙.X/ D
Z
dM�c˙.�/ exp˙i�A�BXAB

is associated with the positive and negative frequencies. Hence, the unfolded
equations for massless fields in MM effectively quantize the model.

Another is the holographic duality between relativistic HS theory and nonrela-
tivistic quantum mechanics. To this end, consider the reduction of Eq. (9.43) to the
time arrow setting XAB D ıABt . The pullback of Eq. (9.43) to the time axis gives

i
@

@t
C˙.Y jt/ D ˙ @2

@Y A@Y B
ıABC˙.Y jt/ : (9.44)

We observe that this equation has the form of the non-relativistic Schrodinger
equation for a free particle in the space with coordinates Y A. Indeed, its right-hand
side acquires the form of Laplacian in the variables Y A while C˙ play a role of  
and N .

By the general argument of the beginning of this section, the two systems
are equivalent, i.e. the relativistic HS theory in the X -space is equivalent to the
nonrelativistic theory in the twistor space. In particular, this equivalence manifests
itself in the equivalence of their symmetry algebra. As demonstrated in [54,55], the
symmetry algebra of the Schrodinger equation is just the HS algebra of Sect. 9.6.

The Schrodinger equation (9.44) has zero potential. An interesting question
is what are dual HS theories for one or another nonzero potential. In the case
of harmonic potential the answer is known [29]. The HS equations in AdS and
dS space-times are dual to the quantum-mechanical models with the proper and
upside down harmonic potentials, respectively. (Not surprisingly, the dS geometry
corresponds to the unstable quantum mechanics.)

Since the HS theory has a potential to unify gravity with quantum mechanics, one
can speculate that it may be able to shed light on the both ingredients. Since full HS
theory is nonlinear, its identification with quantum mechanics at the linearized level
may suggest that, at ultrahigh energies, the HS theory may affect the fundamentals
of quantum mechanics itself, making it nonlinear with the gravitationally small
coupling constant!
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9.13 To String Theory via Multiparticle Symmetry

Properties of the HS theory are to large extent determined by the properties of the HS
algebra. It has been long anticipated that the HS theory should be related somehow
to String Theory. To materialize this idea it is most important to find a HS algebra
rich enough to underly the full fledged String Theory. Recently it was conjectured
[56] that such a symmetry can be associated with a multiparticle symmetry that acts
on all multiparticle states of the HS theory.

Mathematically, this symmetry algebra can be defined as the Lie algebra
associated with the universal enveloping algebra of the HS algebra of Sect. 9.6.
It has a number of features that make it promising as a candidate for a string-like
extension of the HS theory. In particular, it contains the original HS algebra as a
subalgebra. Acting on all multiparticle states of HS theory it has enough room for
mixed symmetry fields which appear in String Theory.

If this idea will indeed work, it will allow to interpret String Theory as a theory
of bound states of the HS theory in striking analogy with the conjecture of [13].

Summary and Conclusion
The HS gauge theories contain gravity along with infinite towers of other
fields with various spins including ordinary matter fields. An interesting
feature of any HS model is that it always contains a scalar field associated
with graviton, which carries no internal indices. It is tempting to speculate
that this scalar may play a role in cosmology and, specifically, for inflation.

The HS theory contains non-minimal higher-derivative interactions that
make it a kind of a nonlocal theory with unusual properties. In particular,
many of the standard tools of GR based on Riemannian geometry may not be
applicable to the HS theory as a consequence of the fact that the HS symmetry
transforms a spin-two field to HS fields. In practice, this implies that in HS
theories one has to be careful with the conventional interpretation of physical
phenomena in terms of the metric tensor. In particular, this should be taken
into account in the analysis of black hole physics in the framework of HS
theory.

The HS gauge theories exist in any dimension [57]. However, the HS
theories available so far are analogues of pure supergravity with no matter
multiplets included. This makes it difficult to analyze the important issue of
spontaneous breakdown of the HS symmetry which is necessary to introduce
a mass scale analogous to the string tension. In fact, it can be argued that,
to achieve a spontaneous breakdown of the HS symmetry, the string-like
extension of the HS theory is needed. It was recently conjectured [56] that
such an extension can be provided by a multiparticle theory to be identified
with the quantum HS theory and String Theory.

(continued)
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Another exciting feature of the HS theory is that it exhibits a remarkable
interplay between classical and quantum physics. This suggests that the
further analysis may shed some light on both gravity and quantum mechanics
at transplanckian energies which is the regime to be described by the HS
theory.

HS theories not only have interesting holographic duals but also, being
formulated in terms of unfolded dynamics approach, can shed light on the
very origin of holographic duality. It can be argued [29] that the holographic
duality links such models in space-times of different dimensions, that have
equivalent form of their unfolded equations.

There are many important directions of the research of HS theories I had
no chance to touch in these lectures.

One of the most interesting is the construction of exact solutions of HS
equations. Most of exact solutions available so far, one way or another result
from the solution of 3d HS theory obtained in [39]. There are two main types
of exact black-hole type solutions of the nonlinear HS equations available in
the literature. The first one is represented by the flat connections associated
with the BTZ-like black holes in the 3d HS theory (see [58] and references
therein; the interpretation of the usual BTZ black hole [59] as a solution of
the HS equations was given in [60]). The second type includes black hole
solutions in AdS4 with the nonzero curvature tensor [61, 62]. Some other
solutions were considered e.g. in [63–65]. Analysis of their properties in the
context of the HS holographic duality and beyond is an important direction of
the current research.

Among other activities we should mention analysis of the action principle
in HS theory at the cubic level (see, e.g., [66–72]) and beyond [73, 74] as
well as the further progress in understanding HS holography (see e.g., [75–
83]) including holographic RG flows [84–86] and conformal correlators of
HS currents [31, 87–92].

Since in this short review it is hard even to list all important research
directions in the HS theory, we refer the reader to other reviews [30,31,44,58,
93–97] as well as to the contribution of Ricardo Troncoso to this workshop
[98], where more detail and references on various aspects of the HS theory
can be found.
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Chapter 10
Higher Spin Black Holes

Alfredo Pérez, David Tempo, and Ricardo Troncoso

Abstract We review some relevant results in the context of higher spin black
holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and
thermodynamic properties. For simplicity, we mainly discuss the case of gravity
nonminimally coupled to spin-three fields, being nonperturbatively described by a
Chern–Simons theory of two independent sl .3;R/ gauge fields. Since the analysis
is particularly transparent in the Hamiltonian formalism, we provide a concise
discussion of their basic aspects in this context; and as a warming up exercise, we
briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black
hole and its thermodynamics, exclusively in terms of gauge fields. The discussion
is then extended to the case of black holes endowed with higher spin fields, briefly
signaling the agreements and discrepancies found through different approaches. We
conclude explaining how the puzzles become resolved once the fall off of the fields
is precisely specified and extended to include chemical potentials, in a way that it
is compatible with the asymptotic symmetries. Hence, the global charges become
completely identified in an unambiguous way, so that different sets of asymptotic
conditions turn out to contain inequivalent classes of black hole solutions being
characterized by a different set of global charges.

10.1 Introduction

Fundamental particles of spin greater than two are hitherto unknown, which from
a purely theoretical point of view, appears to agree with the widespread belief that
massless fields of spin s > 2 are doomed to suffer from inconsistencies. Indeed, the
lore is reflected through a well-known claim in the context of supergravity (see e.g.,

A. Pérez • D. Tempo
Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia, Chile
e-mail: aperez@cecs.cl; tempo@cecs.cl

R. Troncoso (�)
Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia, Chile

Universidad Andrés Bello, Av. Repblica 440, Santiago, Chile
e-mail: troncoso@cecs.cl

© Springer International Publishing Switzerland 2015
E. Papantonopoulos (ed.), Modifications of Einstein’s Theory of Gravity at Large
Distances, Lecture Notes in Physics 892, DOI 10.1007/978-3-319-10070-8__10

265

mailto:aperez@cecs.cl
mailto:tempo@cecs.cl
mailto:troncoso@cecs.cl


266 A. Pérez et al.

[1]), which asserts that the maximum number of local supersymmetries is bounded
by eight; otherwise, since the supersymmetry generators act as raising or lowering
operators for spin, a supermultiplet would contain fields of spin greater than two.
In turn, through the Kaluza–Klein mechanism, this also sets an upper bound on the
spacetime dimension to be at most eleven. The supposed inconsistency of higher
spin fields relies on solid no-go theorems (see [2] for a good review about this
subject). In particular, it is worth mentioning the result of Aragone and Deser [3],
which states that the higher spin gauge symmetries of the free theory around flat
spacetime, cannot be preserved once the field is minimally coupled to gravity.

A consistent way to circumvent the incompatibility of higher spin gauge
symmetries with interactions was pioneered by Vasiliev [4, 5], who was able to
formulate the field equations for a whole tower of nonminimally coupled fields
of spin s D 0, 1, 2, . . . , 1, in presence of a cosmological constant (For recent
reviews see e.g., [6, 7]). It is worth pointing out that, since the hypotheses of
the Coleman–Mandula theorem are not fulfilled by Vasiliev theory, spacetime and
gauge symmetries become inherently mixed in an unaccustomed form [8]. It then
goes without saying that the very existence of Vasiliev theory, naturally suggests a
possible reformulation of supergravity theories from scratch, which would may in
turn elucidate new alternative approaches to strings and M-theory. Indeed, in eleven
dimensions and in presence of a negative cosmological constant, a supergravity
theory that shares some of these features, as the mixing of spacetime and gauge
symmetries, is known to exist [9].

In order to gain some insights about this counterintuitive subject, one may
instead follow the less ambitious approach of finding a simpler set up that still
captures some of the relevant features that characterize the dynamics of higher
spin fields. In this sense, the three-dimensional case turns out to be particularly
appealing, since the dynamics is described through a standard field theory with a
Chern–Simons action [10–12]. The generic theory can be further simplified, since
it admits a consistent truncation to the case of a finite number of nonpropagating
fields with spin s D 2, 3, . . . , N . Hence the simplest case with the desired
properties corresponds to N D 3, so that the theory describes gravity with negative
cosmological constant, nonminimally coupled to an interacting spin-three field.
The remarkable simplification of the theory then allows the possibility of finding
different classes of exact black hole solutions endowed with a nontrivial spin-three
field, as the ones in [13, 14], and [15], respectively. However, despite the simplicity
of these solutions, the subject has not been free of controversy, mainly due to the
puzzling discrepancies that have been found in the characterization of their global
charges and their entropy.

The purpose of this brief review, is overviewing some of the relevant results
about this ongoing subject, as well as explaining how the apparent tension between
different approaches is fully resolved once the chemical potentials are suitably
identified along the lines of [15, 16], so that the asymptotic symmetries, and hence
the global charges, are completely characterized in an unambiguous way.

It is worth highlighting that the action principle in terms of the metric and the
spin-three field is currently known as a weak field expansion of the spin-three field
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up to quadratic order [17]. Thus, in order to deal with the full nonperturbative
treatment of the higher spin black hole solutions, it turns out to be useful to describe
them only in terms of gauge fields and the topology of the manifold, without making
any reference neither to the metric nor to the spin-three field.

Since the analysis becomes particularly transparent in the Hamiltonian formal-
ism, in the next section we concisely discuss some of their basic aspects in the
context of Chern–Simons theories in three dimensions. As a useful warming up
exercise, in Sect. 10.3, the asymptotic behaviour of pure gravity with negative
cosmological constant [18], as well as the BTZ black hole [19, 20] and its
thermodynamics, are briefly analyzed exclusively in terms of gauge fields. Section
10.4 is devoted to the case of gravity coupled to spin-three fields, including the
asymptotic behaviour described in [21, 22], the higher spin black hole solution of
[13, 23], and its thermodynamics [24, 25], briefly signaling the agreements and
discrepancies found through different approaches. We conclude with Sect. 10.5,
where it is explained how these puzzling differences become fully resolved once
the fall off of the fields is precisely specified, so that different sets of asymptotic
conditions turn out to contain inequivalent classes of black hole solutions [15, 16]
being characterized by a different set of global charges.

10.2 Basic Aspects and Hamiltonian Formulation
of Chern–Simons Theories in Three Dimensions

In three-dimensional spacetimes, gauge theories described by a Chern–Simons
action are much simpler than their corresponding Yang–Mills analogues, in the
sense that less structure is required in order to formulate them. Indeed, the manifold
M , locally described by a set of coordinates x�, is only endowed with a gauge
field A D AI�TIdx�, where TI stand for the generators of a Lie algebra g, which is
assumed to admit an invariant nondegenerate bilinear form gIJ D hTI ; TJ i. These
ingredients are enough to construct the action, given by

ICS ŒA� D k

4�

Z
M

�
AdAC 2

3
A3
�
; (10.1)

where k is a constant, and wedge product between forms has been assumed.
Consequently, the action does not require the existence of a spacetime metric, but
it is sensitive to the topology of M . The field equations imply the vanishing of
curvature, i.e., F D dA C A2 D 0, so that the connection becomes locally flat on
shell, and then the theory is devoid of local propagating degrees of freedom. Note
that the action (10.1) is already in Hamiltonian form. Indeed, if the topology of M
is of the formM D ˙�R, where˙ stands for the spacelike section, the connection
splits as A D Aidxi C Atdt, and hence the action (10.1) reduces to
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IH D � k

4�

Z
M

dtd2x"ij
˝
Ai PAj �AtFij

˛
; (10.2)

up to a boundary term. It is then apparent thatAi correspond to the dynamical fields,

whose Poisson brackets are given by
n
AIi .x/ ; A

J
j .x

0/
o
D 2�

k
gIJ"ijı .x � x0/, while

At become Lagrange multipliers associated to the constraints G D k
4�
"ijFij. Then,

the smeared generator of the gauge transformations reads

G .�/ D
Z
˙

d2x h�Gi ;

so that ıAi D fAi ;G .�/g D @i�C ŒAi ;�� (see, e.g., [26–28]). However, when˙
has a boundary, according to the Regge–Teitelboim approach [29], the generator of
the gauge transformations has to be improved by a boundary term Q.�/, i.e.,

QG .�/ D G .�/CQ.�/ ; (10.3)

being such that its functional variation is well-defined everywhere. This implies that
the variation of the conserved charge associated to an asymptotic gauge symmetry,
generated by a Lie algebra valued parameter �, is determined by the dynamical
fields at a fixed time slice at the boundary, which reads

ıQ .�/ D � k

2�

Z
@˙

h�ıA�i d� ; (10.4)

where @˙ stands for the boundary of the spacelike section ˙ .
The transformation law of the Lagrange multipliers, ıAt D @t� C ŒAt ;��, is

then recovered requiring the improved action to be invariant under gauge transfor-
mations. Note that on-shell, by virtue of the identity L�A� D r� .��A�/C ��F��,
diffeomorphisms ı�A� D �L�A� are equivalent to gauge transformations with
parameter � D ���A�, and hence, the variation of the generator of an asymptotic
symmetry spanned by an asymptotic killing vector ��, reads

ıQ .�/ D k

2�

Z
@˙

��
˝
A�ıA�

˛
d� : (10.5)

This means that the variation of the total energy of the system, which takes into
account the contribution of all the constraints, is given by

ıE D ıQ .@t / D k

2�

Z
@˙

hAtıA� id� : (10.6)

It should be stressed that the whole canonical structure only makes sense
provided the variation of the canonical generators can be integrated. This can be
generically done once a precise set of asymptotic conditions is specified, which in
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turn determines the asymptotic symmetries. This will be explicitly discussed in the
next section for the case of pure gravity with negative cosmological constant, as well
as in Sect. 10.4, and further elaborated in Sect. 10.5 in the case of gravity coupled to
a spin-three field.

10.3 General Relativity with Negative Cosmological
Constant in Three Dimensions

As it was shown in [30, 31] General Relativity in vacuum can be described in
terms of a Chern–Simons action. In the case of negative cosmological constant the
corresponding Lie algebra is of the form g D gC C g�, where g˙ stand for two
independent copies of sl .2;R/, which will be assumed to be described by the same
set of matrices Li , with i D �1; 0; 1, given by

L�1 D
�
0 0

1 0

�
I L0 D

�� 1
2
0

0 1
2

�
I L1 D

�
0 �1
0 0

�
; (10.7)

so that the sl .2;R/ algebra reads

�
Li ; Lj

	 D .i � j / LiCj : (10.8)

The connection then splits in two independent sl .2;R/-valued gauge fields, accord-
ing to A D AC C A�, while the invariant nondegenerate bilinear form is chosen
such that the action (10.1) reduces to

I D ICS
�
AC	 � ICS ŒA

�� ; (10.9)

so that the bracket now corresponds to just the trace, i.e., in the representation of
(10.7), h
 
 
 i D tr .
 
 
 /, and the level is fixed by the AdS radius and the Newton
constant as k D l

4G
. The link between the gauge fields and spacetime geometry is

made through

A˙ D ! ˙ e

l
; (10.10)

where ! and e correspond to the spin connection and the dreibein, respectively. The
field equations, F˙ D 0, then imply that the spacetime curvature is constant and
the torsion vanishes, while the metric is recovered from

g�� D 2tr
�
e�e�

�
; (10.11)

which is manifestly invariant under the diagonal subgroup of SL .2;R/ � SL .2;R/,
that corresponds to the local Lorentz transformations. Note that diffeomorphisms
can always be expressed in terms of the remaining gauge symmetries.
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10.3.1 Brown–Henneaux Boundary Conditions

As explained in [32], the asymptotic behaviour of gravity with negative cosmolog-
ical constant, as originally described by Brown and Henneaux [18], can be readily
formulated in terms of the gauge fields A˙. The gauge can be chosen such that the
radial dependence is entirely captured by the group elements

g˙ D e˙L0 ; (10.12)

so that the asymptotic form of the connections is given by

A˙ D g�1˙ a˙g˙ C g�1˙ dg˙ ; (10.13)

where a˙ D a�̇ d� C aṫ dt, read

a˙ D ˙
�
L˙1 � 2�

k
L˙L�1

�
dx˙ ; (10.14)

with x˙ D t
l
˙ � , and the functions L˙ depend only on time and the angular

coordinate.
The asymptotic form of the dynamical fields a�̇ is preserved under gauge

transformations, ıa�̇ D @��˙ C �a�̇ ;�˙	, generated by

�˙ ."˙/ D "˙L˙1 � "0̇ L0 C 1

2

�
"00̇ � 4�

k
"˙L˙

�
L�1 ; (10.15)

where "˙ are arbitrary functions of t , � , provided the functions L˙ transform as

ıL˙ D "˙L 0̇ C 2L˙"0̇ � k

4�
"000̇ : (10.16)

Hereafter, prime denotes the derivative with respect to � . Furthermore, requiring the
components of the gauge fields along time, aṫ , to be mapped into themselves under
the same gauge transformations, together with the transformation laws in (10.16),
implies that the functions L˙ and the parameters "˙ are chiral, i.e.,

@�L˙ D 0 ; @�"˙ D 0 : (10.17)

Note that the first condition in (10.17) means that the field equations have to be
fulfilled in the asymptotic region.

Consequently, according to (10.4), the variation of the canonical generators
associated to the asymptotic gauge symmetries generated by � D �C C ��, in
this case reduces to



10 Higher Spin Black Holes 271

ıQ .�/ D ıQC
�
�C� � ıQ� .��/ ; (10.18)

with

ıQ˙
�
�˙� D � k

2�

Z ˝
�˙ıa�̇

˛
d� D �

Z
"˙ıL˙d� ; (10.19)

which can be readily integrated as

Q˙
�
�˙� D �

Z
"˙L˙d� : (10.20)

Therefore, since the canonical generators fulfill ı�1Q Œ�2� D fQ Œ�2� ;Q Œ�1�g,
their algebra can be directly obtained by virtue of (10.16), which reduces to two
copies of the Virasoro algebra with the same central extension c D 3l

2G
[18].

Expanding in Fourier modes, according to L D 1
2�

P
mLme

im� , the algebra
explicitly reads

i fLm;Lng D .m � n/LmCn C k

2
m3ımCn;0 ; (10.21)

for both copies.

10.3.2 BTZ Black Hole and Its Thermodynamics

The asymptotic conditions described above, manifestly contain the BTZ black hole
solution [19, 20], being described by

a˙ D ˙
�
L˙1 � 2�

k
L˙L�1

�
dx˙ ; (10.22)

when L˙ are nonnegative constants. Indeed, by virtue of Eqs. (10.10) and (10.11),
the spacetime metric is recovered in normal coordinates:

ds2 D l2


d2 C 2�

k

�
LC

�
dxC�2 CL� .dx�/2

�

�
�
e2 C 4�2

k2
LCL�e�2

�
dxCdx�

�
: (10.23)

As shown in [33] (see also [34]), the topology of the Euclidean black hole
corresponds to R

2�S1, where R2 stands for the one of the � � plane, and � D �it
is the Euclidean time, fulfilling 0 	 � < ˇ, where ˇ D T �1 is the inverse of the
Hawking temperature. Since R

2 can be mapped into a disk through a conformal
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compactification, the black hole topology is then equivalent to the one of a solid
torus.

As explained in the introduction, and for later purposes, afterwards we will
perform the remaining analysis exclusively in terms of the gauge fields (10.22) and
the topology of the manifold, without making any reference to the spacetime metric.

The simplest gauge covariant object that is sensitive to the global properties of
the manifold turns out to be the holonomy of the gauge field around a closed cycle
C , defined as

HC D P exp

�Z
C
A�dx�

�
; (10.24)

which is an element of the gauge group. Hence, since in this case the gauge group
corresponds to SL .2;R/� SL .2;R/, the holonomy around C is of the form HC D
H C

C ˝H �
C , with

HĊ D P exp

�Z
C
A�̇ dx�

�
: (10.25)

As the topology of the manifold is the one of a solid torus, there are two inequivalent
classes of cycles: (I) the ones that wind around the handle, and (II) those that do
not. This means that the former ones are noncontractible, while the latter can be
continuously shrunk to a point. Then, the holonomies along contractible cycles are
trivial, i.e.,

HĊII
D �1 ; (10.26)

where the negative sign is due to the fact that, according to (10.35), we are dealing
with the fundamental (spinorial) representation of SL .2;R/; while the holonomies
along noncontractible cycles HĊI

are necessarily nontrivial. Indeed, it is easy to
verify that this is the case for the gauge fields that describe the BTZ black hole
(10.22). For simplicity, we explicitly carry out the computation in the static case,
i.e., for L WD L˙, since the inclusion of rotation is straightforward.

A simple noncontractible cycle in this case is parameterized by  D 0, and
� D �0, with 0, �0 constants, so that the corresponding holonomies around it read

H ˙
� D e2�a

˙

� : (10.27)

These holonomies are then fully characterized, up to conjugacy by elements of
SL .2;R/, by the eigenvalues of 2�a�̇ , given by

	2˙ D 2�2tr
h�
a�̇
�2i D 8�3

k
L ; (10.28)

and hence, since L is nonnegative, they are manifestly nontrivial.
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Analogously, a simple contractible cycle is parameterized by  D 0, and
� D �0. Since the holonomies around this cycle are trivial, the conditions in (10.26)
reduce to

H ˙
� D eˇa

˙

� D eiˇa˙

t D �1 ; (10.29)

and since the cycle winds once, the eigenvalues of iˇat are given by ˙i� , which
equivalently implies that

ˇ2tr
h�
aṫ
�2i D 2�2 : (10.30)

Therefore, the triviality of the holonomies around this cycle amounts to fix the
Euclidean time period as

ˇ D l
r
�k

2L
; (10.31)

in full agreement with the Hawking temperature.
Note that the variation of the total energy (10.6) in this case reads

ıE D k

2�

Z
@˙

�˝
aC
t ıa

C
�

˛ � ha�
t ıa

�
� i
�
d� D 4�

l
ıL ; (10.32)

from which, by virtue of (10.31) and the first law, implies that

ıS D ˇıE D ı
�
4�
p
2�kL

�
; (10.33)

which means that the entropy can be expressed in terms of the global charges
(10.20), as

S D 4�
p
2�kL : (10.34)

The black hole entropy found in this way agrees with the standard result obtained
in the metric formalism. Indeed, according to (10.23), in the static case the event

horizon is located at e2C D 2�
k
L , so that its area is given byA D 4�l

q
2�
k
L , and

hence (10.34) is equivalent to the Bekenstein–Hawking formula S D A
4G

.

10.4 Higher Spin Gravity in 3D

As explained in the introduction, gravity with negative cosmological constant,
nonminimally coupled to an interacting spin-three field can be described in terms of
a Chern–Simons theory [10–12]. The action is then of the form (10.1), and as in the
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case of pure gravity, the corresponding Lie algebra is of the form g D gCC g�, but
where now g˙ are enlarged to two independent copies of sl .3;R/. Both copies of
the algebra will be assumed to be spanned by the same set of matrices Li ,Wm, with
i D �1; 0; 1, andm D �2;�1; 0; 1; 2, given by (see e.g., [22])

L�1 D
0
@0 �2 0

0 0 �2
0 0 0

1
A I L0 D

0
@1 0 0

0 0 0

0 0 �1

1
A I L1 D

0
@0 0 01 0 0

0 1 0

1
A ;

W�2 D
0
@0 0 80 0 0

0 0 0

1
A I W�1 D

0
@0 �2 00 0 2

0 0 0

1
A I W0 D 2

3

0
@1 0 0

0 �2 0
0 0 1

1
A ; (10.35)

W1 D
0
@0 0 0

1 0 0

0 �1 0

1
A I W2 D

0
@0 0 00 0 0

2 0 0

1
A ;

whose commutation relations read

�
Li ; Lj

	 D .i � j / LiCj ;
ŒLi ;Wm� D .2i �m/WiCm ; (10.36)

ŒWm;Wn� D �1
3
.m � n/ �2m2 C 2n2 �mn � 8�LmCn ;

so that the subset of generatorsLi span the algebra sl .2;R/ in the so-called principal
embedding.

The invariant nondegenerate bilinear form can also be chosen so that the action
(10.1) reads

I D ICS
�
AC	 � ICS ŒA

�� ; (10.37)

where A˙ stand for the gauge fields that correspond to both copies of sl .3;R/, and
now the bracket is given by a quarter of the trace in the representation of (10.35),
i.e., h
 
 
 i D 1

4
tr .
 
 
 /. As in the case of pure gravity, the level is also chosen as

k D l
4G

.
It is useful to introduce a generalization of the dreibein and the spin connection,

which relate with the gauge fields according to

A˙ D ! ˙ e

l
; (10.38)

so that the spacetime metric and the spin-three field can be recovered as
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g�� D 1

2
tr
�
e�e�

� I '�� D 1

3Š
tr
�
e.�e�e/

�
; (10.39)

being manifestly invariant under the diagonal subgroup of SL .3;R/ � SL .3;R/,
which corresponds to an extension of the local Lorentz group. The remaining gauge
symmetries are then not only related to diffeomorphisms, but also with the higher
spin gauge transformations. It is worth pointing out that, since the metric transforms
in a nontrivial way under the action of the higher spin gauge symmetries, some
standard geometric and physical notions turn out to be ambiguous, since they are no
longer invariant. This last observation can be regarded as an additional motivation
to explore the physical properties of the theory directly in terms of its original
variables, given by the gauge fields A˙.

10.4.1 Asymptotic Conditions with W3 Symmetries

A consistent set of asymptotic conditions for the theory described above was found
in [21, 22]. Using the gauge choice as in [32], the radial dependence can be
completely absorbed by SL .3;R/ group elements of the form (10.12), so that the
asymptotic behaviour of the gauge fields can be written as in Eq. (10.13), where a˙
are now given by

a˙ D ˙
�
L˙1 � 2�

k
L˙L�1 � �

2k
W˙W�2

�
dx˙ ; (10.40)

and L˙, W˙ stand for arbitrary functions of t , � . The asymptotic symmetries
can then be readily found following the same steps as in the case of pure gravity,
previously discussed in Sect. 10.3.1.

The asymptotic form of the fields a�̇ is maintained under gauge transformations
generated by

�˙ ."˙; �˙/ D "˙L˙1C�˙W˙2 � "0̇ L0 � �0̇ W˙1C1
2

�
�00̇ � 8�

k
L˙�˙

�
W0

C1
2

�
"00̇ � 4�

k
"˙L˙C8�

k
W˙�˙

�
L�1 �

�
�

2k
W˙"˙C7�

6k
L 0̇ �0̇

C �

3k
�˙L 00̇ C 4�

3k
L˙�00̇ � 4�

2

k2
L 2˙�˙ � 1

24
�0000˙

�
W�2

� 1

6

�
�000̇ � 8�

k
�˙L 0̇ � 20�

k
L˙�0̇

�
W�1 ; (10.41)

which depend on two arbitrary parameters per copy, "˙, �˙, being functions of t
and � , provided the transformation law of the fields L˙, W˙ reads
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ıL˙ D "˙L 0
˙ C 2L˙"0

˙ �
k

4�
"000

˙ � 2�˙W 0
˙ � 3W˙�0

˙ ; (10.42)

ıW˙ D "˙W 0̇ C 3W˙"0̇ � 64�
3k

L 2˙�0̇ C 3�0̇ L 00̇ C 5L 0̇ �00̇ C 2

3
�˙L 000̇

� k

12�
�00000˙ �

64�

3k

�
�˙L 0̇ � 5k

32�
�000̇
�
L˙ : (10.43)

Then, the time component of the gauge fields aṫ , is preserved under the gauge
transformations generated by (10.41), with the transformation rules in (10.42),
(10.43), provided the fields and the parameters are chiral:

@�L˙ D @�W˙ D 0 ; (10.44)

@�"˙ D @��˙ D 0 : (10.45)

As in the case of pure gravity, the chirality of the fields in Eq. (10.44) reflects the
fact that the field equations in the asymptotic region are satisfied.

The variation of the canonical generators that correspond to the asymptotic
symmetries spanned by (10.41) now reads

ıQ˙
�
�˙� D � k

2�

Z ˝
�˙ıa�̇

˛
d� D �

Z
."˙ıL˙ � �˙ıW˙/ d� ; (10.46)

and then integrates as

Q˙
�
�˙� D �

Z
."˙L˙ � �˙W˙/ d� : (10.47)

This means that generic gauge fields that fulfill the asymptotic conditions described
here, do not only carry spin-two charges associated to L˙, whose zero modes are
related to the energy and the angular momentum, but they also possess spin-three
charges corresponding to W˙.

The algebra of the canonical generators can be straightforwardly recovered from
the transformation law of the fields in (10.42), (10.43) and it is found to be given by
two copies of theW3 algebra with the same central extension as in pure gravity, i.e.,
c D 3l

2G
. Once the fields are expanded in modes, the Poisson bracket algebra is such

that both copies fulfill

i fLm;Lng D .m � n/LmCn C k

2
m3ımCn;0 ;

i fLm;Wng D .2m� n/WmCn ; (10.48)

i fWm;Wng D1
3
.m � n/ �2m2 �mnC 2n2�LmCn C 16

3k
.m � n/�mCn

C k

6
m5ımCn;0 ;
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where

�n D
X
m

Ln�mLm ; (10.49)

so that the algebra is manifestly nonlinear.
It has also been shown that once the asymptotic conditions (10.40) are expressed

in a suitable “decoupling” gauge choice, they admit a consistent vanishing cosmo-
logical constant limit, so that the asymptotic symmetries are spanned by a higher
spin extension of the BMS3 algebra with an appropriate central extension [35] (see
also [36]). Related results along these lines, including Hamiltonian reduction [37],
unitarity [38], and the analysis of cosmologies endowed with higher spin fields have
been discussed in [39–42].

10.4.2 Higher Spin Black Hole Proposal
and Its Thermodynamics

It is simple to verify that, for the case of constant functions L˙ and W˙, the asymp-
totic conditions described in the previous subsection do not accommodate black
holes carrying nontrivial spin-three charges. This is because once the holonomies
along a thermal cycle are required to be trivial, the spin-three charges W˙ are
forced to vanish. Thus, with the aim of finding black holes solutions which could
in principle be endowed with spin-three charges, a different set of asymptotic
conditions was proposed in [13] (see Sect. 10.5) and further analyzed in [43, 44].
Indeed, this set includes interesting new black holes solutions, which in the static
case are described by three constants, and the gauge fields are of the form (10.13),
with

a˙ D ˙
�
L˙1 � 2�

k
QLL�1 � �

2k
QW W�2

�
dx˙

C Q�
�
W˙2 � 4�

k
QLW0 C 4�2

k2
QL 2W�2 ˙ 4�

k
QW L�1

�
dx� : (10.50)

The precise form of the SL .3;R/ group elements g˙ D g˙ ./, which was further
specified in [23], would be needed in order to reconstruct the metric and the
spin-three field according to Eq. (10.39). In the case of sl .3;R/ gauge fields, the
conditions that guarantee the triviality of their holonomies around the thermal circle,
since the representation in (10.35) is vectorial, now read

H ˙
� D eiˇa

˙

t D 1 ; (10.51)

which turn out to be equivalent to



278 A. Pérez et al.

tr
h�
aṫ
�3i D 0 I ˇ2tr h�aṫ �2

i
D 8�2 : (10.52)

For the gauge fields (10.50), conditions (10.52) reduce to

64� QL 2 Q�
�
32� QL Q�2 � 9k

�
C 27k QW

�
32� QL Q�2 C k

�
� 864�k QW 2 Q�3 D 0 ;

(10.53)

l2�k

2

�
QL � 3 Q� QW C 32�

3k
Q�2 QL 2

��1
D ˇ2 ;

(10.54)

respectively, which for the branch that is connected to the BTZ black hole, being
such that Q� ! 0 when QW ! 0, can be solved for ˇ and Q� in terms of QL and QW ,
according to

ˇ D l

2

s
�k

2 QL
2C � 3
C � 3

�
1 � 3

4C

��1=2
; (10.55)

Q� D 3

4

s
kC

2� QL
1

2C � 3 ; (10.56)

where the constant C is defined through

C � 1
C 3=2

D
s

k

32� QL 3
QW : (10.57)

A proposal to deal with the global charges and the thermodynamics of this black
hole solution, being based on a holographic approach, was put forward in [13, 23].
The bulk field equations were identified with the Ward identities for the stress tensor
and the spin-three current of an underlying dual CFT in two dimensions, so that
the integration constant QL was interpreted as the stress tensor, while QW and Q�
were associated to the spin-three current and its source, respectively. According to
this prescription, the first law of thermodynamics implies that the variation of the
entropy should be given by

ı QS D 4�

l
ˇ
�
ı QL � Q�ı QW

�
; (10.58)

which by virtue of (10.55), (10.56) integrates as

QS D 4�
p
2�k QL

r
1 � 3

4C
; (10.59)
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so that the trivial holonomy conditions around the thermal circle agree with the
integrability conditions of thermodynamics.

It is worth mentioning that the black hole entropy formula (10.59) remarkably
agrees with the result found in [45], which was obtained from a completely different
approach. Indeed, the computation of the free energy was carried out directly in
the dual CFT with extended conformal symmetry in two dimensions, exploiting
the properties of the partition function under the S-modular transformation, making
then no reference to the holonomies in the bulk.

These approaches have been reviewed in [46–48], and further results about black
hole thermodynamics along these lines have been found in [49–58].

However, it should be stressed that identifying the integration constants QL and
QW with global charges, appears to be very counterintuitive from the point of view

of the canonical formalism. This is because, in spite of the fact that the components
of the gauge fields along dx˙ for the black hole solution (10.50) agree with the ones
of the asymptotic fall-off in (10.40), once a nonvanishing constant Q� is included,
the additional terms along dx� amount to a severe modification of the asymptotic
form of the dynamical fields a�̇ , so that the expression for the global charges in
Eq. (10.47) no longer applies for this class of black hole solutions. Hence, as shown
in [24], in full analogy with what occurs in the case of three-dimensional General
Relativity coupled to scalar fields with slow fall-off at infinity [59, 60], the effect of
modifying the asymptotic behaviour is such that the total energy acquires additional
nonlinear contributions in the deviation of the fields with respect to the reference
background. Indeed, the variation of the total energy can be obtained directly from
(10.6), which for the case of the black hole solution (10.50), reads

ıE D k

2�

Z �˝
aC
t ıa

C
�

˛ � ha�
t ıa

�
� i
�
d� ;

D 4�

l



ı QL � 32�

3k
ı. QL 2�2/C Q�ı QW C 3 QW ı Q�

�
: (10.60)

Note that (10.60) is not an exact differential. This is natural because the
variation of the total energy not only includes the variation of the mass, but also
the contribution coming from all the constraints. Therefore, in order to suitably
disentangle the mass (internal energy) from the work terms, one should provide
a consistent set of asymptotic conditions that allows the precise identification of the
global charges as well as the chemical potentials. This is discussed in Sect. 10.5.
Nonetheless, the expression (10.60) provides a nice shortcut to compute the black
hole entropy, circumventing the explicit computation of higher spin charges and
their chemical potentials [24, 25]. This is because, by virtue of the first law, the
inverse temperature ˇ acts as an integrating factor, being such that the product ˇıE
becomes an exact differential that corresponds to the variation of the entropy, i.e.,

ıS D ˇıE D ı
"
4�
p
2�k QL

�
1 � 3

2C

��1r
1 � 3

4C

#
; (10.61)
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so that the black hole entropy is given by

S D 4�
p
2�k QL

�
1 � 3

2C

��1r
1 � 3

4C
: (10.62)

As explained in [25], the entropy (10.62) can be recovered from a suitable
generalization of the Bekenstein–Hawking formula, given by

S D A

4G
cos



1

3
arcsin

�
33=2

'C
A3

��
; (10.63)

which depends on the reparameterization invariant integrals of the pullback of the
metric and the spin-3 field at the spacelike section of the horizon, i.e., on the horizon
area A and its spin-3 analogue:

'
1=3
C WD

Z
@˙C

�
'��

dx�

d�

dx�

d�

dx

d�

�1=3
d� : (10.64)

It is worth highlighting that, for the static case, and in the weak spin-three field
limit, our expression for the entropy (10.63) reduces to

S D A

4G

�
1 � 3

2

�
g��

�3
'2��� C O

�
'4
��ˇ̌ˇ̌

C

; (10.65)

in full agreement with the result found in [17], which was obtained from a
completely different approach. Indeed, in [17] the action was written in terms of the
metric and the perturbative expansion of the spin-three field up to quadratic order, so
that the correction to the area law in (10.65) was found by means of Wald’s formula
[61].

Further results about black hole thermodynamics and along these lines have been
found in [53, 54, 62–65], and the variation of the total energy (10.60) has also been
recovered through different methods in [43, 44].

Since the entropy is expected to be an intrinsic property of the black hole, the
fact that the nonperturbative expression for the entropy S in Eq. (10.62) differs
from QS in (10.59) by a factor that characterizes the presence of the spin-three

field, i.e., S D QS �1 � 3
2C

��1
, is certainly disturbing. Indeed, curiously, a variety

of different approaches either lead to QS or S , in [13, 45, 52, 58], and [25, 62–64],
respectively, or even to both results [53, 54] for the black hole entropy.

As explained in [24,25], the discrepancy of these results stems from the mismatch
in the definition of global charges aforementioned, which turns out to be inherited
by the entropy once computed through the first law, even in the weak spin-three field
limit.

Nonetheless, some puzzles still remain to be clarified, as it is the question
about how the entropy (10.62) fulfills the first law of thermodynamics in the grand
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canonical ensemble, which is related to whether the black hole solution (10.50)
actually carries or not a global a spin-three charge. This is discussed in the next
Sect. 10.5.

10.5 Solving the Puzzles: Asymptotic Conditions Revisited
and Different Classes of Black Holes

As explained in [15, 16], the puzzles mentioned above become resolved once the
asymptotic conditions are extended so as to admit a generic choice of chemical
potentials associated to the higher spin charges, so that the original asymptotic
W3 symmetries are manifestly preserved by construction. In this way, any possible
ambiguity is removed. This can be seen as follows. At a slice of fixed time,
according to (10.40), the asymptotic behaviour of the dynamical fields is of the
form

a�̇ D
�
L˙1 � 2�

k
L˙L�1 � �

2k
W˙W�2

�
d� ; (10.66)

which is maintained under the gauge transformations�˙, defined through (10.41),
with (10.42) and (10.43). In order to determine the asymptotic form of the gauge
fields along time evolution, note that the field equations Fti D 0 read

PAi D @iAt C ŒAi ; At � ;

which implies that the time evolution of the dynamical fields corresponds to a gauge
transformation parameterized by At . Hence, in order to preserve the asymptotic
symmetries along the evolution in time, the Lagrange multipliers must be of the
allowed form (10.41), i.e., aṫ D �˙. Thus, following [15], the chemical potentials
are included in the time component of the gauge fields only, so that the asymptotic
form of the gauge fields is given by

a˙ D ˙
�
L˙1 � 2�

k
L˙L�1 � �

2k
W˙W�2

�
dx˙ ˙ 1

l
�˙.�˙; �˙/dt ;

(10.67)

where �˙, �˙ stand for arbitrary fixed functions of t , � without variation (ı�˙ D
ı�˙ D 0), that correspond to the chemical potentials. Note that, since the
asymptotic form of the dynamical fields (10.66) is unchanged as compared with
(10.40), the expression for the global charges remains the same, i.e., at a fixed t slice,
the global charges are again given by (10.47), so that the asymptotic symmetries are
still generated by two copies of the W3 algebra.

Consistency then requires that the asymptotic form of aṫ , should also be
preserved under the asymptotic symmetries, which implies that the field equations
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have to be fulfilled in the asymptotic region, and the parameters of the asymptotic
symmetries satisfy “deformed chirality conditions”, which read

l PL˙ D ˙ .1C �˙/L 0
˙ � 2�˙W 0

˙ ;

l PW˙ D ˙ .1C �˙/W 0
˙ ˙

2

3
�˙

�
L 000

˙ �
16�

k

�
L 2

˙
�0�

; (10.68)

and

l P�˙ D ˙ .1C �˙/ �0̇ ˙ 2�˙"0̇ ;

l P"˙ D ˙ .1C �˙/ "0̇ � 2

3
�˙

�
�000̇ � 32�

k
�0̇ L˙

�
; (10.69)

respectively, where for simplicity, in Eqs. (10.68), (10.69), the chemical potentials
associated to the spin-two and spin-three charges, given by �˙ and �˙, were
assumed to be constants.

Therefore, by construction, the functions L˙, W˙ are really what they mean,
since their Poisson brackets fulfill the W3 algebra with the same central extension.
Note that this is so regardless the choice of chemical potentials, because the
canonical generators do no depend on the Lagrange multipliers.

The asymptotic conditions given by (10.67) then provide the required extension
of the ones in [21, 22], since the latter are recovered when the chemical potentials
are switched off, i.e., for �˙ D 0, �˙ D 0. In this case, Eqs. (10.68) and (10.69)
reduce to (10.44) and (10.45), respectively, expressing the fact that the fields and the
parameters become chiral.

From a different perspective, the case of �˙ D �1, �˙ D 1 has also been
discussed in [66].

It is worth emphasizing that since the Lagrange multipliers appear in the
improved action through the improved generators (10.3), the interpretation of
�˙, �˙ as chemical potentials, is also guaranteed by construction. Note that
this corresponds to the standard procedure one follows in the case of Reissner–
Nordstrm black holes, where the chemical potential associated to the electric charge
corresponds to the time component of the electromagnetic field, being the Lagrange
multiplier of the U.1/ constraint.

The extended asymptotic conditions (10.67), in the case of constant functions
L˙, W˙ and chemical potentials �˙, �˙, then accommodate a new class of
black hole solutions, endowed not only with mass and angular momentum, but
also with nontrivial well-defined spin-three charges [15]. Their asymptotic and
thermodynamical properties are further discussed in [16], where it is explicitly
shown that for this solution, there is no tension between the different approaches
mentioned above.

Note that in the standard approach for black hole thermodynamics, the tempera-
ture and the chemical potential for the angular momentum do not explicitly appear
in the fields. Instead, they enter through the identifications involving the Euclidean
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time and the angle, so that the range of the coordinates is not fixed and depends
on the solution. The presence of nonvanishing chemical potentials �˙ associated
to the spin-two charges, then allows performing the description keeping the range
of the coordinates fixed once and for all, i.e., 0 	 � < 2� and 0 	 � < 2�l ,
which amounts to introduce a non trivial lapse and shift in the metric formalism.
Both approaches are indeed equivalent, but in the case of higher spin black holes,
since the chemical potentials that correspond to the spin-three charges cannot be
absorbed into the modular parameter of the torus, it becomes conceptually safer to
follow the latter approach, since all the chemical potentials become introduced and
treated unambiguously in the same footing.

Otherwise, for instance, if the chemical potentials were not introduced along the
thermal circles, but instead along additional non-vanishing components of the gauge
fields along the conjugate null directions, as in the case of [13], the asymptotic form
of the gauge fields would be given by

a˙ D ˙
�
L˙1 � 2�

k
QL˙L�1 � �

2k
QW˙W�2

�
dx˙ ˙�˙ . Q�˙; Q�˙/ dx�;

(10.70)

which severely modifies the components of the dynamical fields a�̇ , in a way that
is incompatible with the asymptoticW3 symmetry. This is because at a fixed t slice,
the terms proportional to Q�˙ contribute to a�̇ with additional terms of the form

a�̇ D
�
L˙1 � 2�

k
QL˙L�1 � �

2k
QW˙W�2

�
C . Q�˙L˙1 C Q�˙W˙2/

C


1

2

�
�4�
k
Q�˙ QL˙ C 8�

k
QW˙ Q�˙

�
L�1 �

�
�

2k
QW˙ Q�˙ � 4�

2

k2
QL 2˙ Q�˙

�
W�2

�

� 4�
k
QL˙ Q�˙W0 ; (10.71)

that are not of highest (or lowest) weight, and hence incompatible with the asymp-
totic conditions (10.67) that implement the Hamiltonian reduction of the current
algebra associated to sl.3;R/ to the W3 algebra. Indeed, in this case, the asymptotic
symmetries that preserve the asymptotic form of a� are shown to be spanned by two
copies of the Bershardsky–Polyakov algebraW 2

3 [67,68], corresponding to the other
non trivial (so-called diagonal) embedding of sl .2;R/ into sl .3;R/ [16]. Therefore,
in spite of dealing with the same action, the effect of this drastic modification
of the boundary conditions amounts to deal with a completely different theory,
being characterized by a different field content, and hence with an inequivalent
spectrum, so that their corresponding black hole solutions, as the one in (10.50),
are characterized by another set of global charges of lower spin.

It is worth pointing out that our procedure to incorporate chemical potentials can
be straightforwardly extended to the case of g˙ D sl .N;R/, regardless the way in
which sl .2;R/ is embedded, as well as to the case of infinite-dimensional higher
spin algebras.
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Some closing remarks are in order. It should be mentioned that the case of three-
dimensional gravity nonminimally coupled with spin-three fields, also appears to
be consistently formulated in the second-order formalism by introducing a suitable
set of auxiliary fields [69]. Besides, in the case of spin-three and higher, consistent
sets of asymptotic conditions have also been proposed in [21, 70, 71], while exact
solutions and their properties have been explored in [72–76]. In the context of higher
spin supergravity in three dimensions, the asymptotic structure was analyzed in [77],
and exact solutions have also been found in [78–80]. Moreover, along the lines
of holography and the corresponding dual CFT theory with extended conformal
symmetry at the boundary [81–83], further interesting results can also be found in
[84–91].
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Chapter 11
Chern–Simons Forms and Gravitation Theory

Jorge Zanelli

Abstract The Chern–Simons (CS) form started as a curious obstruction in math-
ematics 40 years ago, to become a central object in theoretical physics. CS
terms are central features in high temperature superconductivity and in recently
discovered topological insulators. In classical physics, the minimal coupling in
electromagnetism and the action for a mechanical system in Hamiltonian form
are examples of CS functionals. CS forms are also the natural generalization of
the minimal coupling between the electromagnetic field and an even-dimensional
membrane. Here, a cursory review of the role of CS forms in gravitation theories is
presented at an introductory level.

11.1 Introduction

Chern–Simons forms are mathematical structures related to integral topological
invariants known as characteristic classes, that describe the mapping between a
manifold and a gauge group. The idea is that a gauge connection A.x/ can be
viewed as a mapping between the spacetime manifold M and a Lie algebra L.
A characteristic class is an integer that counts how many times the gauge group is
covered as x takes values on M .

In 1972, S.-S. Chern and J. Simons were looking for a combinatorial formula
to express a characteristic class known as the Pontryagin character. However, in
their own words, . . . This process got stuck by the emergence of a boundary term
which did not yield to a simple combinatorial analysis. The boundary term seemed
interesting in its own right and it and its generalization are the subject of this paper
[1]. They turned their failed attempt into an important mathematical discovery,
because they had the intuition that the existence of the annoying boundary term
should have a profound meaning.
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In the 40 years since their discovery, CS forms have opened new areas of study in
mathematics and several excellent books aimed at their many applications in physics
have been written [2, 3], for which these notes are no substitute. Our purpose here
is to merely collect a few useful observations that could help to understand the
role of CS forms in gravitation. There is an abundant literature describing solutions
and other applications of CS gravities, like [4–6]. Here, the emphasis is on the
construction of the action principles, and in the geometric features that make CS
forms particularly interesting for gravity. More extended discussions can be found
in other reviews by this author such as [7–9].

11.2 Chern–Simons Forms in Physics

CS forms appear in gauge theories, however their usefulness is not because they are
gauge-invariant, but quasi-invariant: under a gauge transformation they transform
by the addition of a total derivative, just like an abelian connection [10]. Consider
a Yang-Mills connection (vector potential) A for a nonabelian gauge field theory.
Under a gauge transformation, A changes as

A�.x/! A0
�.x/ D g�1.x/ŒA�.x/C @��g.x/; (11.1)

where x 2 M , g.x/ 2 G defines a gauge transformation that can be continuously
connected to the identity. Then a CS form C , constructed with the connection A
transforms as

C .A0/ D C .A/C d˝; (11.2)

precisely as an abelian connection. Clearly, an abelian connection 1-form is a
particular case of a CS form, but in general C .A/ are .2nC 1/-forms with integer
n � 0.

There are two instances in classical physics where a function changes by a
total derivative giving rise to nontrivial effects: the Lagrangian change under a
symmetry transformation, L.q; Pq/dt ! L.q0; Pq0/dt0 D L.q; Pq/dt C d˝.q; t/, and
the minimal coupling between the electromagnetic potential A� and an external
current,

R
A�.x/j

�.x/dnx.
These are not completely distinct situations. According to Noether’s theorem,

a symmetry transformation that changes the action by a boundary term gives rise
to a conserved current. This current in turn couples to the dynamical variables as
a source for the classical equations. In classical mechanics, the conserved charges
are constants of the Hamiltonian flow in phase space, like the energy-momentum or
the angular momentum of an isolated system. In electrodynamics, requiring gauge
invariance of the coupling between the gauge potential and the external current
implies the conservation law for the electric current (electric charge conservation).
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It is reassuring that neither the minimal coupling,A�.x/j�, nor the conservation
law @�j

� D 0 require a metric, (here @ is the ordinary derivative, and j is a con-
travariant vector density). This makes the coupling and the conservation equation
valid in any coordinate basis and for any background geometry. This ultimately
means that, if the current is produced by a point charge, the coupling is insensitive
to shape of the particle’s worldline, and independent of the geometry of the ambient
spacetime. Thus, regardless of how the particle twists and turns in its evolution, or
the metric properties of spacetime where the interaction takes place, the coupling
remains consistently gauge invariant and the current is absolutely conserved.

A .2nC 1/ CS form makes a good candidate Lagrangian for a gauge-invariant,
background metric-independent theory in 2nC 1 dimensions, a possibility that has
been extensively explored in theoretical physics over the past 30 years. It is less
obvious but equally true that the CS forms define gauge-invariant couplings between
a non-abelian connection A and a charged 2p-brane in analogy to the minimal
coupling [10, 11]. This can be seen as the generalization of the minimal coupling
between the electromagnetic connection A (a (0 C 1)-CS form) and the current
generated by a charged point particle (0-brane).

11.2.1 Construction of CS Forms

The fundamental object in a gauge theory is the connection, a generalization of
the abelian vector potential. Typically, the connection is a matrix-valued one-form1

field,

A D A�dx� D Aa�Kadx�; (11.3)

where fKaI a D 1; 2; : : : ; N g is a basis of the Lie algebra L associated to G. Under
the action of G, the connection transforms as in (11.1), while the curvature two-form
(field strength) F D dAC A ^ A, transforms homogeneously,

F
g�! F0 D g�1Fg: (11.4)

In the electromagnetic case the gauge group is abelian and therefore the
curvature, defined by the electric and magnetic fields, is gauge-invariant. All gauge-
invariant quantities have directly observable local features and this is why EE and EB
can be directly measured by the forces they produce. In the non-abelian case, the
2k-form

P2k D hFki; (11.5)

1In what follows, differential forms will be used throughout unless otherwise indicated. We follow
the notation and conventions of [12].



292 J. Zanelli

is also invariant under G by construction and is therefore observable. Here h
 
 
 i
stands for a symmetric, multilinear operation in the Lie algebra (a generalized
trace). The integrals of an invariant of this kind (or more generally, the trace of
any polynomial in F), like the Euler or the Pontryagin forms are the characteristic
classes. They capture the topological nature of the mapping between the spacetime
manifold and the Lie algebra L in which the connection one form A WM 7! L takes
its values.

A CS form is defined in association with a characteristic class. To fix ideas,
consider h
 
 
 i to be the ordinary trace in a particular representation.2 Then, P2k is
a homogeneous polynomial in the curvature F associated to a gauge connection A
such that [2]:

i. It is invariant under gauge transformations (11.4), which is expressed as
ıgaugeP2k D 0.

ii. It is closed, dP2k D 0. Hence, it is locally exact, P2k D dC2k�1, where C is
some .2k � 1/-form,

iii. Its integral over a 2k-dimensional compact manifold, orientable and without
boundary, is a topological invariant,

Z
M

P2k D c2kz.M/ ; z 2 Z: (11.6)

Condition (i) is satisfied by virtue of the cyclic property of the trace of products
of 2-forms. Condition (ii) is a consequence of the Bianchi identity, DF D dF C
ŒA;F� � 0. Finally, (iii) means that, although P2k is an exact form in a local chart,
globally it may not be. It is precisely the fact that C could not always be globally
defined, what caught the attention of Chern and Simons and led to the identification
of CS forms in [1]. These CS forms can be expressed as the trace of a polynomial
in A and dA that cannot be written as a local function involving only the curvature
F. This makes the CS forms rather cumbersome to write, but its exact expression
is not needed in order to establish its most important property: Under a gauge
transformation (11.1), C2n�1 changes by a locally exact form (a total derivative
in a coordinate patch).

The proof is elementary: Since the homogeneous polynomial P2k is invari-
ant under gauge transformations, performing a gauge transformation on it gives
ıgaugeP2k D ıgauged.C2k�1/ D d.ıgaugeC2k�1/. SinceP2k is invariant, one concludes
that d.ıgaugeC2k�1/ D 0, and by Poincaré’s lemma, this last equation implies that
locally ıgaugeC2k�1 D d˝:

This is a nontrivial result: although the nonabelian connection A transforms
inhomogeneously, as in (11.1), the CS form transforms in the same way as an
abelian connection. This is sufficient to ensure that a CS (2n � 1)-form defines a
gauge invariant action in a (2n� 1)-dimensional manifold,

2Some Lie algebras have more than one way to define a trace. The algebra of rotations, for example,
has two.
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ıgaugeI ŒA� D
Z
M2n�1

ıgaugeC2n�1 D
Z
M2n�1

d˝; (11.7)

which vanishes for appropriate boundary conditions.
CS actions are exceptional because, unlike most physical actions, such as a

free particle, Maxwell or Yang-Mills, the CS form does not require a metric. The
gauge invariance of the action does not depend on the shape of the manifold
M2n�1; a metric structure may not even be defined on it. This is a welcome
feature in a gravitation theory in which the geometry is dynamical. A consequence
of this is that in CS gravity theories, the metric is a derived (composite) object
and not a fundamental field to be quantized. This in turn implies that concepts
such as the energy-momentum tensor and the inertial mass must be regarded as
phenomenological constructs of classical or semi-classical nature, as emerging
phenomena.

11.2.2 Gravitation and Diffeomorphism Invariance

It is commonly said that the fundamental symmetry of gravity is the group of general
coordinate transformations3 These transformations do form a group whose action is
certainly local, but this is not a useful symmetry and much less a unique feature of
gravity. Indeed, physics does not depend on the choice of coordinates, and therefore
any action, for whatever physical system, must be coordinate-invariant; otherwise
one has made a mistake somewhere. Hence, all meaningful statements derived from
an action principle must be coordinate-invariant as well.

Any well defined physical theory must be invariant under general changes of
coordinates: coordinates are labels introduced by humans in order to describe where,
when and how events occur, and to communicate with other humans. Coordinates,
together with the units for measuring space, time, temperature, pressure, tension,
etc., are conventional, and objective situations cannot depend on the coordinates
physicists employ to describe them.

General coordinate invariance is explicitly recognized in Lagrangian mechanics,
where the choice of coordinates is left completely arbitrary. In other words, general
coordinate transformations are not a distinctive symmetry of gravity, it is the
invariance of the laws of Nature under changes in the form humans choose to
describe it. We experience this every time we write or Maxwell’s or Schrödinger’s
equations in spherical coordinates, in order to render more transparent the presence
of boundaries or sources with spherical symmetry. In such cases, the coordinates
are adapted to the symmetry of the physical situation, but that does not imply that
coordinates could not be chosen otherwise.

3Those transformations are often called the diffeomorphisms, although this means “coordinate
diffeos”, not to be confused with the diffeomorphisms of the spacetime manifold.
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The confusion seems to start from the assertion that diffeomorphisms are local
translations,

x� ! x0� D x� C ��.x/: (11.8)

These are gauge-like transformations in the sense that �� is an arbitrary function
of x, but here the analogy with gauge transformations stops. Under coordinate
transformations, a vector transforms as

v0�.x0/ D L�� .x/v�.x/; where L�� .x/ D
@x0�

@x�
D ı�� C

@��

@x�
: (11.9)

In gauge transformations, the new field has the same argument as the old one,
whereas here the argument of v0� in (11.9) is x0 and not x, which is a different
point on the manifold. One could try to write (11.9) in a form similar to a gauge
transformation,

v0�.x/ D L�� .x/v
�.x/ � �	.x/@	v�.x/

D v�.x/C @��

@x�
v�.x/ � �	.x/@	v�.x/ (11.10)

While the first two terms on the right of (11.10) correspond to the way a vector
transforms under the gauge group, the last term, represents a drift, produced by
the fact that the translation actually shifts the point in the manifold. This type of
term is not present in a gauge transformation of the type (11.1), which means that
the diffeomorphism group does not act as a local symmetry as in a standard gauge
theory, like Yang-Mills.

The best way to describe gauge transformations is in the language of fibre
bundles. A fibre bundle is locally a direct product of a base manifold and a group,
each fibre being a copy of the orbit of the group. In the case of the diffeomorphism
group, the “fibres” would lie along the base. Therefore this structure is not locally a
product and the group of coordinate transformations on a manifold do not define a
standard fibre bundle structure. Basically, the problem is that the translation group
does not take a field at a given point into a different field at the same point, but
changes the arguments of the fields, something gauge transformations never do.

Apart from the obvious fact that the translations form a rather trivial group
whose gauging could hardly describe the richness of gravity, it is apparent that
the translation symmetry is violated by the spacetime curvature, unless spacetime
happens to be exceptionally symmetric, like Minkowski or (anti-) de Sitter. In a
genuine gauge theory the gauge invariance is respected everywhere, by all solutions
of classical equations, and by all conceivable off-shell fields in the quantum theory.
This is a key feature that makes gauge symmetries extremely useful in the quantum
description: the invariance is an inherent property of the fields in the action and is
not spoiled by dynamics, be it classical or quantum.
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11.2.3 Lorentz Transformations

Einstein’s starting point of General Relativity was the observation that gravity can
be neutralized by free fall. In a small freely falling laboratory, the effect of gravity
can be eliminated so that the laws of physics there are indistinguishable from those
observed in an inertial laboratory, in Minkowski space. This trick is a local one: the
lab has to be small enough and the time span of the experiments must be short
enough. Under these conditions, the experiments will be indistinguishable from
those performed in absence of gravity. In other words, in a local neighbourhood,
spacetime is Lorentz invariant. In order to make this invariance manifest, it is nec-
essary to perform an appropriate coordinate transformation to a particular reference
system, viz., a freely-falling one. Conversely, Einstein argued, in the absence of
gravity the gravitational field could be mocked by applying an acceleration to the
laboratory.

This idea is known as the principle of equivalence meaning that, in a small
spacetime region, gravitation and acceleration are equivalent effects. A freely falling
observer defines a local inertial system. For a small enough region, freely falling
projectiles trace straight lines, and the discrepancies with Euclidean geometry
become negligible. Particle collisions mediated by short range forces, such as those
between billiard balls, molecules or subnuclear particles, satisfy the conservation
laws of energy and momentum valid in special relativity.

Since physical phenomena in a small neighbourhood of any spacetime should
be Lorentz invariant, and since Lorentz transformations can be performed indepen-
dently at every point, gravity must be endowed with local Lorentz symmetry. Hence,
Einstein’s observation makes gravitation a gauge theory for the group SO.3; 1/, the
first nonabelian gauge theory ever proposed [13, 14].

Note that while the Lorentz group can act independently at each spacetime
point, the translations are a symmetry only in maximally symmetric spacetimes.
The invariance of gravitation theory under SO.3; 1/ is a minimal requirement, the
complete group of invariance could be larger, G � SO.3; 1/. Natural options are the
de Sitter (SO.4; 1/), anti-de Sitter (SO.3; 2/), conformal (SO.4; 2/) and Poincaré
(ISO.3; 1/) groups, or some of their supersymmetric extensions.

11.3 First Order Gravity

In order to make the gauge symmetry of gravitation manifest it is best to use
fields that correspond to some nontrivial representation of the Lorentz group,
SO.D � 1; 1/, where D is the spacetime dimension. This is most effectively done
if the metric and affine features of the geometry are represented by two one-form
fields, the vielbein ea.x/ D ea�dx� and the Lorentz connection !ab.x/ D !ab�dx�,
treated independently. This construction embraces the Principle of Equivalence,
fully exploiting it to describe the geometry [15, 16].
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Spacetime is postulated to be a smooth D-dimensional manifold M , of
Lorentzian signature .�1; 1; 1; 
 
 
 ; 1/. At every point on x 2 M there is a
D-dimensional tangent space Tx , which is a good approximation of the manifold
M in the neighborhood of x. This tangent space corresponds to the reference frame
of a freely falling observer mentioned in the Equivalence Principle. Every tangent
space is a replica of Minkowski space, invariant under the action of the Lorentz
group. This endows the spacetime manifold with a collection of vector spaces
parametrized by the manifold, fTx; x 2 M g, something that mathematicians call
a fibre bundle. In this case this is called the tangent bundle, where the basis is the
spacetime and the fibres are the tangent spaces on which the Lorentz group acts
locally. The essential point is that the manifold M , labelled by the coordinates x�

is the spacetime where we live, and the collection of tangent spaces over it is where
the symmetry group acts.

11.3.1 The Vielbein

The fact that any measurement carried out in spacetime can be translated to one in
a freely falling frame, means that there is an isomorphism between tensors on M
and tensors on Tx, represented by means of a linear mapping, also called “soldering
form” or vielbein. It is sufficient to define this mapping on a complete set of vectors
such as the coordinate separation dx� between two infinitesimally close points on
M . The corresponding separation in Tx is defined to be

dza D ea�.x/dx�; (11.11)

where za represent an orthonormal coordinate basis in the tangent space. For this
reason the vielbein is also viewed as a local orthonormal frame. Since Tx is a
standard Minkowski space, it has a natural metric (�ab) which induces a metric on
M through the isomorphism ea�. In fact,

ds2 D �abdzadzb D �ab e
a
�.x/dx� eb� .x/dx�

D g��.x/dx�dx�; (11.12)

where g��.x/ � �ab e
a
�.x/ e

b
� .x/ is the induced metric on M from the tangent

space metric. This relation can be read as the vielbein being “the square root” of the
metric. Given ea�.x/ one can find the metric and therefore, all the metric properties
of spacetime are contained in the vielbein. The converse, however, is not true: given
the metric, there exist infinitely many choices of vielbein related by O.D � 1; 1/
transformations that give the same metric.

By the definition (11.11) the vielbein one-forms transform as the components of
(contravariant) vector under local Lorentz rotations of Tx , SO.D � 1; 1/, as

ea.x/
��! e0a.x/ D �a

b.x/e
b.x/; (11.13)
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where the matrix�.x/ leaves the metric in the tangent space unchanged,

�a
c .x/�

b
d .x/�ab D �cd ; (11.14)

and the metric g��.x/ is also invariant under Lorentz transformations.

11.3.2 The Lorentz Connection

A connection is required in order to ensure that the differential structure remains
invariant under local Lorentz transformations�.x/. The role of the connection is to
compensate the rotation experienced by a vector relative to the local Lorentz frames
when parallel transported between tangent spaces on neighboring points, Tx and
TxCdx. Consider a field �a.x/ that transforms as a vector under Lorentz rotations
defined on the tangent Tx . The covariant derivative, compares the components of
�a.x/ and those of �ajj.x/, the field obtained by parallel transport of �a.x C dx/
from x C dx to x. The final expression is [17, 18],

dx�Œ@��
a.x/C !ab�.x/�b.x/� D dx�D��

a.x/

or, more compactly,

D�a.x/ D d�a C !ab�a: (11.15)

where !ab D !ab�dx� is the connection one-form.
This new expression is also a vector under Lorentz transformations at x provided

! transforms as a connection, namely

!ab.x/
��! !0a

b.x/ D �a
c.x/!

c
d .x/�

d
b.x/C�a

c.x/d�
c
b.x/: (11.16)

11.3.3 Lorentz Invariant Tensors

The group SO.D � 1; 1/ has two invariant tensors, the Minkowski metric, �ab,
already mentioned, and the totally antisymmetric Levi-Civita tensor, �a1a2���aD . They
are the same in every tangent space, they are constant; moreover, they are also
Lorentz-invariant. These two conditions imply

d�ab D D�ab D 0; (11.17)

d�a1a2���sD D D�a1a2���aD D 0: (11.18)
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The first condition, the requirement that the Lorentz connection be compatible with
the metric structure of the tangent space, implies that the Lorentz connection must
be antisymmetric, �ac!

c
b D ��bc!

c
a. The second, implies a more obscure identity,

�b1a2���aD!b1 a1C�a1b2 ���aD!b2a2C
 
 
C�a1a2���bD!bD aD D 0. This second relation does
not impose further restrictions on the components of the Lorentz connection. Thus,
the number of independent components of !ab� is D2.D � 1/=2, which is less than

the number of independent components of the Christoffel symbol (D2.D C 1/=2).

11.3.4 Curvature

One of the fundamental properties of exterior calculus is that the second exterior
derivative applied to a continuously differentiable p-form, vanishes identically,
d.d˛p/ D d2˛p D 0. A consequence of this is that the square of the covariant
derivative operator is not a differential operator, but an algebraic operator, the
curvature two-form,

D2�a D dŒd�a C !ab�b�C !abŒd�b C !bc�c� (11.19)

D Œd!ab C !ac!cb��b:

The two-form within brackets in this last expression is a second rank Lorentz tensor
known as the curvature two-form (see, e.g., [17,18] for a formal definition ofRab),

Rab D d!ab C !ac ^ !cb D 1

2
Rab��dx� ^ dx�: (11.20)

The fact that !ab.x/ and the gauge potential in Yang-Mills theory, Aab D
Aab�dx�, are both 1-forms and their transformation laws have the same form, reflects
the fact that they are both connections of a gauge group. The curvature Rab is
completely analogous to the Yang-Mills curvature (field strength), F D dACA^A.

11.3.5 Torsion

The two independent geometrical ingredients, ! and e, play different roles as
underscored by their different transformation properties under the Lorentz group,
and define two independent tensors involving their derivatives, one is the curvature
(11.20), and the other is the covariant derivative of the vielbein, also known the
torsion 2-form,

T a D dea C !ab ^ eb; (11.21)
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In contrast with T a, the curvatureRab depends only on ! and is not the covariant
derivative of something else. In a manifold with torsion, one can split the connection
into a torsion-free part N!, and the so-called contorsion �,

dea C N!ab ^ eb � 0; and T a D �ab ^ eb:
In this case, the curvature two-form reads

Rab D NRab C ND�ab C �ac�cb; (11.22)

where NRab and ND are the curvature and the covariant derivative constructed out of
the torsion-free connection. It is the purely metric part of the curvature two-form,
NRab , that relates to the Riemann curvature,R˛ˇ�� , through

NRab D 1

2
ea˛e

b
ˇR

˛ˇ
��dx�dx� : (11.23)

11.3.6 Bianchi Identities

Acting with the covariant derivative on the curvature yields an important property,

DRab D dRab C !ac ^Rcb � !cb ^ Rac � 0 : (11.24)

This is known as Bianchi identity, because it is not a set of equations but it is
satisfied for any well defined connection 1-form, and therefore it does not restrict
the form of !ab� in any way. The Bianchi identity can be checked explicitly by
substituting (11.22) in the second term of (11.24), and it implies that the curvature
Rab is “transparent” to the exterior covariant derivative,D.Rab�b/ D Rab ^D�b .

Another direct consequence of this identity is that by taking successive exterior
derivatives of ea and !ab no new independent tensors are generated, in particular,

DTa D Rab ^ eb: (11.25)

The physical implication is that if no other fields are introduced, there is a very
limited number of possible Lagrangians that can be constructed out of these fields
in any given dimension [19].

11.4 Gravity Actions

All geometric features of the spacetime manifold M are captured by the two
fundamental fields ea and !ab . Hence, the action principle for a purely gravita-
tional system could be expressed by a functional I Œe; !�, with these two fields
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independently varied. In this scheme, the metric is a derived expression and is not a
fundamental field to be varied in the action .

We postulate the action to be a local functional of the one-forms ea, !ab , their
exterior derivatives and exterior products of them. In addition, the two invariant
tensors of the Lorentz group, �ab, and �a1����aD can be used to raise, lower and con-
tract indices. Invariance under general coordinate transformations is automatically
guaranteed as exterior forms are coordinate-independent by construction.

The use of only exterior products of forms excludes the metric, its inverse and
the Hodge �-dual (see [15] and [16] for more on this). This postulate also excludes
tensors like the Ricci tensor4 R�� D E	

a �bce
c
�R

ab
	� , orR˛ˇR��R˛�ˇ� , except in very

special combinations like the Gauss-Bonnet form, that can be expressed as exterior
products of forms.

The action principle cannot depend on the choice of basis in the tangent space and
hence Lorentz invariance should be ensured. A sufficient condition to have Lorentz
invariant field equations is to demand the Lagrangian itself to be Lorentz invariant,
but this is not really necessary. If the Lagrangian is quasi-invariant so that it changes
by a total derivative—and the action changes by a boundary term—, still gives rise to
covariant field equations in the bulk, provided the fields satisfy appropriate boundary
conditions.

11.4.1 Lorentz-Invariant Lagrangians

Let us consider first Lorentz invariant Lagrangians. They must scalar D-forms
consisting of linear combinations of products of ea; Rab; T

a, contracted with �ab

and �a1 ���aD (no !). Such invariants are listed in the following table [19]:

Invariant Form type

P2k DW Ra1 a2Ra2 a3 � � �Rak a1 2k-form

%k DW ea1Ra1 a2Ra2 a3 � � �Rak beb; odd k (2k+2)-form

�k DW Ta1Ra1 a2Ra2 a3 � � �Rak bT b; even k (2k+4)-form

�k DW ea1Ra1 a2Ra2 a3 � � �Rak bT b (2k+3)-form

En DW �a1a2 ���aDRa1a2Ra3a4 � � �Ran�1an ; even n 2n-form

Lp DW �a1a2 ���aDRa1a2Ra3a4 � � �Ra2p�1a2p ea2pC1 � � � eaN N-form

Among these local Lorentz invariants, the Pontryagin forms P2k and the Euler
forms E2n define topological invariants in 4k and 2n dimensions, respectively:
Their integrals on compact manifolds without boundary have integral spectra,

˝n

Z
M2n

E2n 2 Z; Q̋
k

Z
M4k

P4k 2 Z ; (11.26)

4Here E	
a is the inverse vielbein, E	

a e
b
	 D ıab .
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where ˝n and Q̋
k are normalization coefficients determined uniquely by the

dimension of the manifold. Thus, in every even dimension D D 2n there is a
topological invariant of the Euler family. If the dimension is a multiple of four,
there are invariants of the Pontryagin family as well, of the form

PD DP4k1P4k2 
 
 
P4kr ; (11.27)

where 4.k1 C k2 C 
 
 
 C kr/ D D, so the number of Pontryagin invariants
grows with the number of different ways to express the number D=4 as a sum of
integers. As shown in [19], for large D this number grows approximately as by the
Hardy-Ramanujan formula,� 1p

3D
expŒ�

p
D=6�.

11.4.2 Lovelock Theories

If torsion is set to zero the first and second order theories coincide. Moreover, �k , �k
and %k vanish, and we are led to the following theorem [15, 20]: In the absence
of torsion, the most general action for gravity I Œe; !�, invariant under Lorentz
transformations, takes the form

IDŒe; !� D �
Z
M

ŒD=2�X
pD0

˛pL
D
p (11.28)

where ˛p are arbitrary constants, and LDp is given by

LDp D �a1 ���aDRa1a2 
 
 
Ra2p�1a2p ea2pC1 
 
 
 eaD : (11.29)

The Lovelock series is an arbitrary linear combination where each term LDp
is the continuation to dimension D of all the lower-dimensional Euler forms. In
even dimensions, the last term in the series is the Euler form of the corresponding
dimension, LDD=2 D ED . Let us examine a few examples.
 D D 2: The Lovelock Lagrangian reduces to 2 terms, the two-dimensional

Euler form and the spacetime volume (area),

I2 D �

Z
M

�abŒ˛1R
ab C ˛0eaeb�

D �

Z
M

p
jgj .˛1RC 2˛0/ d2x (11.30)

D �˛1 
 E2 C 2�˛0 
 V2:

This action has as a local extremum for V2 D 0 and does not produce a very
interesting dynamical theory for the geometry unless matter is included. If the
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manifoldM has Euclidean metric and a prescribed boundary, the first term becomes
a boundary term and the action is extremized by a minimal surface, like a soap
bubble, the famous Plateau problem [21].
 D D 3 and D D 4: The action reduces to the Einstein-Hilbert and cosmological

constant terms. In four dimensions, the action also admits the Euler invariant E4,

I4 D �
Z
M

�abcd
�
˛2R

abRcd C ˛1Rabeced C ˛0eaebeced
	

D ��
Z
M

p
jgj �˛2 �R˛ˇ
ıR˛ˇ
ı � 4R˛ˇR˛ˇ CR2�C 2˛1RC 24˛0	d4x

D ��˛2 
 E4 � 2˛1
Z
M

p
jgjRd4x � 24�˛0 
 V4: (11.31)

 D D 5: The Euler form E4, also known as the Gauss-Bonnet density, provides
the first nontrivial generalization of Einstein gravity occurring in five dimensions,

�abcdeR
abRcdeeD

p
jgj �R˛ˇ
ıR˛ˇ
ı � 4R˛ˇR˛ˇ CR2	d5x: (11.32)

The fact that this term could be added to the Einstein-Hilbert action in five
dimensions seems to have been known for many years, and is commonly attributed
to Lanczos [22].

11.4.3 Torsional Series

Lovelock’s theorem assumes T a D 0 to be an identity, which contradicts the
assumption that ea and !ab are two independent features of the geometry, to
be treated on equal footing. For D 	 4 and in the absence of fermionics or
non-minimally coupled fields, this is a consequence of the equation obtained by
varying with respect to !ab , so that imposing the torsion-free constraint may be
seen as an unnecessary but harmless restriction. In fact, for 3 and 4 dimensions, the
Lorentz connection can be algebraically solved from its own field equation and, by
the implicit function theorem, the first order and the second order actions have the
same extrema and define equivalent theories, I Œ!; e� D I Œ!.e; @e/; e�.

In general, even if the torsion-free condition is often a solution of the field
equations, it does not generically follow from them. Thus, it is reasonable to
consider generalizations of the Lovelock action in which torsion is not assumed
to vanish identically, adding all possible Lorentz invariants involving torsion that
would vanish if T a D 0 [19]. This means allowing for combinations of P2k , %k , �k
and �k . For example, a possible contribution to the Lagrangian in fifteen dimensions
could be P2%1�0�0. Other examples are: �0 D eaTa in D D 3, and %1 D eaebRab,
�0 D T aTa, in D D 4. Some linear combinations of these may yield a torsional
topological invariants. For example,
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K4 D �0 � %1 D T aTa � eaebRab; (11.33)

is the well-known Nieh-Yan form, whose integral yields a linear combination of
Pontryagin numbers associated to SO.n; 5 � n and SO.m; 4 � m/ [23] (for details
and extensive discussions, see [19]).

11.4.4 Chern–Simons Series

For every characteristic class in a given dimension 2n, there is a (2n � 1) CS form
can be associated. Thus, for the Euler forms E , the Pontryagin forms P , and for
every torsional topological form K , there is a corresponding CS form such that

dC E D E ; dC P DP ; dCK D K : (11.34)

The CS forms associated to the Euler invariant are less obvious to obtain and, as we
will see next, they correspond to particular combinations of Lovelock Lagrangians
Lp .

These CS forms are ready to be integrated in one dimension less than the
dimension for which the characteristic classes are defined. For example, the
Pontryagin and the Nieh-Yan forms in four dimensions, P4 and N4, respectively
have their corresponding CS three-forms,

C P
3 D !abd!ba C

2

3
!ab!

b
c!

c
a ; dC P

3 D RabRab DP4; (11.35)

CK
3 D eaTa ; dCK

3 D T aTa � eaebRab D K4: (11.36)

The most general gravity Lagrangian in D dimensions is a linear combination
of D-form Lorentz invariants and quasi-invariants of the families described above.
While the Lovelock series has a simple systematic rule for any dimension (11.28),
there is no simple recipe for the torsional Lagrangians and there is not even a
systematic rule to tell how many terms appear in a given dimension, and moreover
the number of torsional invariants grows exponentially with D. This proliferation
is not just an aesthetic problem, but it involves a huge number of indeterminate
dimensionful parameters in the theory, making it hopelessly unmanageable.

11.4.5 Dynamical Content of Lovelock Theory

The Lovelock theory is the natural generalization of GR in spacetimes of dimension
greater than four. In the absence of torsion these theories generically describe the
same number of degrees of freedom as the Einstein-Hilbert theory,D.D�3/=2 [24].
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The action (11.28) describes the only ghost-free effective theory for a spin-2 field
obtained from string theory at low energy [15, 25]. The unexpected and nontrivial
lack of ghosts seems reflects the fact that for vanishing torsion the Lovelock action
yields second order field equations for the metric, so that the propagators behave
as k�2 instead of k�2 C k�4, as would be the case in a generic theory involving
arbitrary scalar combinations of the curvature tensor, like in f .R/ theories.

Extremizing the action (11.28) with respect to ea and !ab, yields

ıID D
Z
ŒıeaEa C ı!abEab� D 0; (11.37)

up to surface terms. The condition for ıID D 0 under arbitrary infinitesimal
variations is that Ea and Eab vanish,

Ea D
Œ D�1

2 �X
pD0

˛p.D � 2p/E .p/
a D 0 ; Eab D

Œ D�1
2 �X

pD1
˛pp.D � 2p/E .p/ab D 0;

(11.38)

where we have defined

E .p/
a WD �ab2 ���bDRb2b3 
 
 
Rb2pb2pC1eb2pC2 
 
 
 ebD ; (11.39)

E
.p/

ab WD �aba3 ���aDRa3a4 
 
 
Ra2p�1a2pT a2pC1ea2pC2 
 
 
 eaD : (11.40)

These equations contain first derivatives of ea and !ab . If one furthermore
assumes—as is usually done—that the torsion vanishes identically,

T a D dea C !abeb D 0; (11.41)

then the second equation (11.38) is automatically satisfied. Moreover, the torsion-
free condition can be solved for ! as a function of the inverse vielbein (E�

a ) and its
derivatives,

!ab� D �E�
b .@�e

a
� � � 	

��e
a
	/; (11.42)

where � 	
�� is symmetric in �� and can be identified as the Christoffel symbol

(torsion-free affine connection). Substituting this expression for the Lorentz connec-
tion back into (11.39) yields second order field equations for the metric, identical to
the ones obtained from varying the Lovelock action written in terms of the Riemann
tensor and the metric,

IDŒg� D
Z
M

dDx
p
g
�
˛0
0 C ˛0

1RC ˛0
2.R

˛ˇ
ıR˛ˇ
ı � 4R˛ˇR˛ˇ CR2/C 



	
:
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The remarkable feature of GR that the field equations for the metric are second order
and not fourth order, in spite of the Lagrangian involving second derivatives of g�� ,
is a consequence of the fact that the action can also be written using only wedge
products and exterior derivatives of form fields, without using the �-Hodge dual. In
f .R/ theories, for example, this condition is not respected and they generically give
rise to fourth order field equations. The standard, purely metric theory is also called
“second order formalism” because it involves up to second derivatives of the metric.
In the presence of fermionic matter or non-minimal couplings, however, torsion
does not necessarily vanish and therefore a purely metric formulation would not be
equivalent to the first order one. Therefore, the first and second order Lagrangians
are much more than two different formalisms, they correspond to inequivalent
theories.

One important feature that makes the behaviour of Lovelock theories very
different for D 	 4 and for D > 4 is that in the former case the field equations
(11.38) are linear in the curvature tensor, while in the latter case the equations are
generically nonlinear in Rab. For D 	 4 the Eq. (11.40) imply the vanishing of
torsion, which is no longer true for D > 4. In fact, the field equations evaluated
in some configurations may leave some components of the curvature and torsion
tensors completely undetermined. For example, Eq. (11.38) has the form of a
polynomial in Rab times T a, and it often happens that the polynomial vanishes
identically, leaving the torsion tensor completely undetermined.

However, the configurations for which the equations leave some components of
Rab or T a undetermined form sets of measure zero in the space of solutions. In a
generic case, outside of these degenerate configurations, the Lovelock theory has
the same number of degrees of freedom as ordinary gravity [24]. The problem
of degeneracy, however, is a major issue in determining the time evolution of
certain dynamical systems, usually associated with the splitting of the phase space
into causally disconnected regions and irreversible loss of degrees of freedom
[26]. These features might be associated to a dynamical dimensional reduction in
gravitation theories [27], and has been shown to survive even at the quantum level
[28].

11.4.6 Euler-CS Forms and the Extension of Lorentz
Symmetry

The proliferation issue is a serious weakness of the theory. The coefficients in
front of each term in the Lagrangian are not only arbitrary but dimensionful.
This problem already occurs in 4 dimensions, where Newton’s constant and the
cosmological constant are dimensionful, and it only gets worse at higher dimensions
and leaves little room for optimism in a quantum version of the theory. Dimensionful
parameters in the action are potentially dangerous because they are likely to
acquire uncontrolled quantum corrections. This is what makes ordinary gravity
nonrenormalizable in perturbation theory: In 4 dimensions, Newton’s constant has
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dimensions of [mass]�2 in natural units. This means that as the order in perturbation
series increases, more powers of momentum will occur in the Feynman graphs,
making the ultraviolet divergences increasingly worse. Concurrently, the radiative
corrections to these bare parameters require the introduction of infinitely many
counterterms into the action to render them finite [29], and an illness that requires
infinite amount of medication is incurable.

One solution for this problem would be if those coefficients were somehow fixed
by a symmetry principle. But a symmetry that can protect the theory in the quantum
regime should be unbreakable by quantum corrections, and not just an approximate
feature of the effective classical descendant. A symmetry that is only present in the
classical limit but is not a feature of the quantum theory is said to be anomalous. An
anomalous symmetry is an mirage of the classical limit that does not correspond to
a true symmetry of the microscopic world.

A good way to make a symmetry the parameters would be if they could be
absorbed in a rescaling of the fields. In odd dimensions there is a unique choice
of coefficients in the Lovelock action that yields a theory in which the local Lorentz
symmetry is enlarged to de Sitter, anti-de Sitter or Poincar’e gauge groups. The
resulting action has no dimensionful parameters and can be seen to depend on
a unique (dimensionless) constant. This coefficient can be further shown to be
quantized, following an argument similar to the one that yields Dirac’s quantization
of the product of magnetic and electric charge [30]. All these miraculous properties
can be traced back to the fact that the particular choice of coefficients in that
Lagrangian turns the Lovelock Lagrangian into a CS form for an enhanced gauge
symmetry.

The coefficients ˛p in the Lovelock action (11.28) have dimensions lD�2p . This
is because the canonical dimension of the vielbein is Œea� D l , while the Lorentz
connection has dimensions Œ!ab� D l0, as a true gauge field. This reflects the fact
that gravity is naturally a gauge theory for the Lorentz group, where ea plays the role
of a matter field, not a connection field but a vector under Lorentz transformations.

Consider combining the two fundamental fields ea, and !ab into a bigger 1-form
W AB as

W AB D



!ab ea`�1
�eb`�1 0

�
(11.43)

where a; b; :: D 1; 2; ::D; while A;B; : : : D 1; 2; ::;DC 1. This one-form defines a
new connection antisymmetric inA�B withD.DC1/=2 independent components,
that can therefore accommodate the generators for the de Sitter or anti-de Sitter
group, depending on how the Minkowski metric is extended to D C 1 dimensions,
�ab ! %AB. The curvature F AB D dW AB C W A

CW
CB , is easily shown to be a

combination of the Lorentz curvature, the vielbein and torsion,

F AB D


Rab ˙ `�2eaeb `�1T a
�`�1T b 0

�
: (11.44)
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In this way, the D-dimensional Lorentz group is embedded into the de-Sitter or
anti-de Sitter groups,

SO.D � 1; 1/ ,!


SO.D; 1/; %AB D diag.�ab;C1/
SO.D � 1; 2/; %AB D diag.�ab;�1/ ; (11.45)

or into the Poincaré group ISO.D � 1; 1/ in the limit `!1.
With the new curvature F one can define the Euler invariant,

EDC1 D �A1A2���ADC1
F A1A2 
 
 
F ADADC1 ; (11.46)

which is nontrivial provided the field W AB is viewed as a connection in D C 1

dimensions, which requires that the D-dimensional spacetime be considered as a
submanifold embedded in D C 1 dimensional manifold NM (M � NM ), or as its
boundary, (M D @ NM ). Obviously, since F AB is a two-form, this also requires that
D C 1 D 2n.

Substituting the expression (11.44) in (11.46) produces a polynomial of the form

�a1b1 ���anbncDC1
.Ra1b1 ˙ `�2ea1eb1 / 
 
 
 .Ranbn ˙ `�2eanebn/T cDC1 : (11.47)

It is simple algebra to observe that since T a D Dea, and DRab � 0, this last
expression can be written as the exterior derivative of a polynomial in Rab and ea,

EDC1 D dC E
2n�1 ; (11.48)

which yields the expression for the Euler-CS form in 2n � 1 dimensions. For
example, for D D 3 this yields

LE3 D ��abc.R
abec ˙ 1

3l2
eaebec/ ; (11.49)

which can be recognized as the Einstein-Hilbert Lagrangian with cosmological
constant in three dimensions. The important feature is that since the Euler form
EDC1 is invariant under an extension of the three-dimensional Lorentz group, G �
SO.2; 1/, where G D SO.2; 2/ or SO.3; 1/, the three-dimensional theory described
by (11.49) inherits this enlarged symmetry. The same construction directly yields
the .2n � 1/-dimensional (A)dS-invariant Lagrangian as

LE2n�1 D �
n�1X
pD0

.˙1/pC1l2p�D

.D � 2p/
�
n � 1
p

�
�ŒR�pŒe�2n�1�2p ; (11.50)

where �ŒR�pŒe�2n�1�2p stands for L2n�1
p in (11.29).

Clearly (11.50) is a particular case of a Lovelock Lagrangian in which all the
coefficients N̨p have been fixed to so that the symmetry is embedded in a larger
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group as in (11.45). Here � is an arbitrary dimensionless constant, and `, the only
dimensionful parameter of the Lagrangian can be absorbed in a rescaling of the
vielbein, so that the resulting CS Lagrangian not only has enlarged gauge symmetry,
it is also scale invariant.

Finally, it can also be observed that a similar CS construction can be done for the
torsional topological invariants, leading to CS forms that also have enlarged gauge
symmetry and scale invariance, but since there is no simple formula for the torsional
Lorentz invariants and torsional topological densities, the corresponding CS forms
have to be defined in each dimension separately. For more details, the reader is urged
to consult a more extensive review like [7, 31].

11.5 Summary

The relevance of gauge symmetry in physics cannot be overemphasized. Establish-
ing that all interactions in nature originate on this invariance principle is one of the
great achievements of physics in the twentieth century. Gauge symmetry explains
the subnuclear interactions, the functioning of stars, the chemistry of life and the
geometry of the universe at large. Einstein’s discovery that the equivalence principle
means that gravity is a gauge theory for the Lorentz group. The spacetime geometry
is described by two independent notions, metricity and affinity, each represented by
a fundamental field that transforms under the local Lorentz symmetry in a definite
representation.

It is an even more remarkable feature that in odd dimensions these two
fundamental objects can combine to become a connection for an enlarged gauge
symmetry, the de Sitter, anti-de Sitter or Poincaré groups. The result is a CS theory
that has no arbitrary free parameters, no dimensionful couplings, and whose gauge
invariance is independent of the spacetime geometry. None of these features seems
random. One cannot help feeling that something profound and beautiful lies in these
structures. Whether the CS theories of gravity, or some more ambitious underlying
extension turns out to be the way to understand the connection between gravitation
and quantum mechanics, remains to be seen. However, the fact that CS forms are
singled out in gravity, the fact that they play such an important role in the couplings
between gauge fields and sources, their deep relation with quantum mechanics,
strongly suggest that there is some meaning to it. This does not look like a contingent
result of natural chaos.
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Chapter 12
Holographic Chern–Simons Theories

H. Afshar, A. Bagchi, S. Detournay, D. Grumiller, S. Prohazka, and M. Riegler

Abstract Chern–Simons theories in three dimensions are topological field theories
that may have a holographic interpretation for suitable chosen gauge groups and
boundary conditions on the fields. Conformal Chern–Simons gravity is a topological
model of three-dimensional gravity that exhibits Weyl invariance and allows various
holographic descriptions, including Anti-de Sitter, Lobachevsky and flat space
holography. The same model also allows to address some aspects that arise in
higher spin gravity in a considerably simplified setup, since both types of models
have gauge symmetries other than diffeomorphisms. In these lectures we summarize
briefly recent results.

12.1 Introduction

Chern–Simons theories in three dimensions have a wide range of applications in
mathematics and physics (see [1–7] for various reviews). The bulk action

SCSŒA� D kCS

4�

Z
M
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�
A ^ dAC 2

3
A ^A ^A� (12.1)
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depends on a dimensionless coupling constant, the Chern–Simons level kCS, a
Lie-algebra valued connection 1-form A and a manifold M that often has some
boundary @M . In these lectures we always assume that M topologically is either a
filled cylinder or a filled torus.

While the Lagrange-3-form in the action (12.1) is not gauge invariant, the
equations of motion are gauge invariant,

F D dAC A ^ A D 0 ; (12.2)

and show that locally all solutions are pure gauge. The theory is topological in the
sense that its action does not depend on the metric, and also topological in the sense
that the theory has no local physical degrees of freedom (see [8] for a review on
topological field theories).

Thus, all physical excitations are of global nature, and if M has a boundary one
can picture the excitations as edge states localized at the boundary, much like in the
Anti-de Sitter/conformal field theory (AdS/CFT) correspondence.

The precise boundary conditions imposed on the connectionA are a crucial input
in the specification of the model, and the same bulk action can describe completely
different physical systems, depending on the specific choice of boundary data.

Prominent examples of Chern–Simons theories with special boundary conditions
are Einstein gravity with negative cosmological constant [9, 10] and higher spin
theories [11, 12], some aspects of which are reviewed below.

In these lectures we focus mostly on a specific theory of gravity, conformal
Chern–Simons gravity (CSG) [13–15]. Its bulk action is similar to the Chern–
Simons action (12.1), but depends on a connection that is not a fundamental field,
namely on the Christoffel connection.

SCSG D k

4�

Z
M

d3x �˛ˇ
 � �
˛�

�
@ˇ�

�

� C 2

3
� �

ˇ��
�

�

�
(12.3)

Consequently, the equations of motion obtained by varying the action (12.1) with
respect to the metric do not imply flatness of the geometry, but only conformal
flatness.

C�� D 1
2
"�

˛ˇr˛Rˇ� C .�$ �/ D 0 (12.4)

The quantity C�� is the Cotton tensor, which vanishes in three dimensions if and
only if spacetime is conformally flat (see for instance [16]).

Thus, as opposed to three-dimensional Einstein gravity with negative cosmo-
logical constant, which allows only locally AdS solutions and thus only AdS
holography, CSG has also some non-AdS solutions and is thus a simple model
that allows to study non-AdS holography. Moreover, CSG has an additional gauge
symmetry, namely Weyl symmetry
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g�� ! e2˝ g�� ; (12.5)

so that metrics that are not diffeomorphic to each other can nevertheless be gauge
equivalent. All these properties are shared by higher spin gravity, which is why
CSG can be regarded as a simple toy model for higher spin gravity and non-AdS
holography (see [17, 18] for the higher spin perspective and [19, 20] for the CSG
perspective).

We address now which boundary conditions are possible in CSG. In principle,
any conformally flat metric is an allowed background. However, for practical
applications it usually makes sense to consider backgrounds that have at least one
Killing vector, e.g., associated with asymptotic time translations. In that case, a
Kaluza–Klein reduction to two dimensions reduces CSG to a specific non-linear
Maxwell–Einstein theory [21]. This theory in turn can be mapped to a specific
Dilaton–Maxwell–Einstein theory, whose classical solutions can be found globally
[22]. It turns out that all such solutions have additional Killing vectors: they are
either maximally symmetric, i.e., have six Killing vectors, or they have four Killing
vectors.

The first option allows to study AdS holography, flat space holography and
de Sitter holography. The second option allows to study Lobachevsky holography.
In the rest of these lectures we review some of these holographic setups and
recent results. In Sect. 12.2 we review AdS holography. In Sect. 12.3 we address
Lobachevsky holography. In Sect. 12.4 we focus on flat space holography, in
particular in the context of quantum gravity toy models.

12.2 Anti-de Sitter Holography

Holography provides a map between quantum gravity in d C 1 dimensions and
quantum field theories in d dimensions. While holographic correspondences exist
that involve specific types of non-unitary theories—see [23, 24] and references
therein—for many purposes one would like to insist on unitarity.

As we shall review in Sects. 12.2.1 and 12.4.2, in three-dimensional gravity
unitarity prefers spacetimes with AdS asymptotics for quantization of parity even
theories and asymptotically flat spacetimes for quantization of parity odd theories.
There are two pure gravity models without local degrees of freedom in three
dimensions, parity even Einstein-Hilbert gravity (EHG) and parity odd conformal
Chern–Simons gravity (CSG). These models can be written as Chern–Simons
topological gauge theories of level kCS for SO(2,2) AdS [10, 25] and SO(3,2)
conformal [26] groups respectively, with a proper non-degenerate bilinear form.
The AdS algebra

ŒJa; Jb� D �abcJ
c; ŒJa; Pb� D �abcP

c; ŒPa; Pb� D ��abcJ
c ; (12.6)
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admits two different non-degenerate bilinear forms. In case of EHG this would be
[10],

tr.Ja; Pb/ D 1
2
�ab : (12.7)

The Chern–Simons theory based on this algebra and this bilinear form can be
decomposed as the sum of two Chern–Simons actions of SO(2,1) gauge group with
opposite levels. The conformal algebra on the other hand has a unique bilinear form.

In this formalism, the dreibein ea, and the (dualized) spin connection !a, are
gauge fields in the translation Pa and the rotation Ja generators and the gauge
transformations A� ! A� C D�" generate diffeomorphisms on-shell [10] when
the gauge parameter � depends linearly on fields, "a D Aa���,

ı�A
a
� D @�� 
 Aa C � 
 @Aa� C ��F a

�� ; (12.8)

The asymptotic analysis for EHG on AdS was first done by Brown and
Henneaux in [27] where they recognized that under suitable boundary conditions the
asymptotic symmetries of this theory are given by two copies of the Virasoro algebra
with the same central charge. A detailed analysis for CSG with AdS boundary
conditions was done in [19,20,28]. In the following subsection we address the main
aspects of these results.

12.2.1 Conformal Chern–Simons Gravity

Before discussing the first order formulation of CSG as a CS gauge theory of
SO(3,2), we review the asymptotic analysis of (12.3) in the metric formulation in
which the metric g is the dynamical field [19, 20]. In Gaussian normal coordinates,
consistent asymptotically locally AdS boundary conditions on the metric are,

ds2 D g��dx�dx� D e2�
h
d2 C


˛ˇ‚ …„ ƒ�


.0/

˛ˇ e
2 C 
.1/˛ˇ e C 
.2/˛ˇ C 
 
 


�
dx˛dxˇ

i
;

(12.9)

where  is the “radial” coordinate and x˛ the “boundary coordinates” (for instance,
light-cone coordinates x˙). The equations of motion (12.4) for the choices 
.0/C� D
1
2
, 
.0/˙˙ D 0 and 
.1/�� D 0 impose the restrictions



.2/
CC D L .xC/ ; 
.2/�� D NL .x�/ and @2�


.1/
CC D 
.1/CC


.2/�� : (12.10)

The most general variation of the line-element that we permit is

ı
�
ds2
� D e2� �2ı� d2 C Œ2
˛ˇ ı� C ı
˛ˇ� dx˛dxˇ

�
: (12.11)
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which indicates different scenarios in deforming the boundary metric, namely the
trivial, fixed and free Weyl factor, � D 0, ı� D 0 and ı� ¤ 0, respectively. Here
we consider the last case with � D f .xC; x�/ (for possible radial dependence see
[20]). After adding a suitable boundary term for having a well-defined variational
principle, the full on-shell variation of the action reads

ıSCSG

ˇ̌
EOM D

1

2

Z
@M

d2x
q
�
.0/

�
T ˛ˇ ı


.0/

˛ˇ C J ˛ˇ ı
.1/˛ˇ
�
: (12.12)

The response functions T ˛ˇ and J ˛ˇ are Brown–York stress tensor and partially
massless response with conformal weights � D 2 and � D 1, respectively, whose
non-zero components are given by

T˙˙ D � k
�

�


.2/

˙˙ C 1
2
@2˙f

�
(12.13)

JCC D k

2�


.1/
CC with

�
@2� � �

k
T��

�
JCC D 0 : (12.14)

For the BTZ black hole [29] we obtain

MBTZ D 2krCr� ; JBTZ D k.r2C C r2�/ ; (12.15)

where jrCj � jr�j are the inner and outer horizon radii, respectively (with the usual
definitions of mass,M D � R d'T tt , and angular momentum, J D � R d'T t' where
x˙ D t ˙ '). As compared to EHG the role of mass and angular momentum is
exchanged: for real r˙ the angular momentum JBTZ is non-negative, whereas the
mass MBTZ can have either sign, exactly like in “exotic” gravity theories [30].

The asymptotic Weyl factor � D f gives in general a contribution to the
asymptotic charges, since CSG is only invariant under diffeomorphism and Weyl
rescaling up to a boundary term. Conservation of the corresponding charges in turn
requires cancellation of these anomalies by imposing the following conditions on
the Weyl factor and its variation,

@C@�f D 0 ; @t .f @'ıf / D total '-derivative : (12.16)

Particularly simple choices are f D f .xC/ or f D f .x�/. The non-vanishing
2-point functions are given by (z D ' C it):

hJCC.z; Nz/JCC.0; 0/i D 2k Nz
z3

(12.17)

hTCC.z/TCC.0/i D 6k

z4
D �hT��.Nz/T��.0/i (12.18)

These results show that one of the conformal weights of the partially massless
mode is negative, Nh D �1=2. This is precisely the conformal weight required for a
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semi-classical null state at level 2 [20], which is indeed reproduced on the gravity
side through a 1-loop ghost determinant [31]. We can also read off the central
charges of the dual CFT,

c D �Nc D 12k : (12.19)

In order to be explicit about the derivation of the asymptotic symmetry algebra,
we now move to the first order formulation where CSG can be written in terms of
three Lorentz valued variables (note that kCS D 2k here), e, ! and 	.

S.1/CSG D
kCS

4�

Z
M

tr
�
! ^ �d! C 2

3
! ^ !� � 2	^ T � (12.20)

The spin-connection is solved in terms of the dreibein ! D !.e/ by the torsion
constraint, T D deC e ^ ! D 0, variation with respect to ! solves the Lagrange
multiplier as 	 D S.e/, where S is the Schouten one-form, and variation with
respect to e gives the same field equation as in the metric formulation, C.e/ D 0

where C is the Cotton one-form. It has been shown by Horne and Witten [26] that
considering these variables (e, ! and 	) as gauge fields along translation, rotation
and special conformal transformation generators and adding a Stückelberg field �
along the dilatation,

A� D ea�Pa C !a�Ja C 	a�Ka C ��D ; (12.21)

this action can be written as a Chern–Simons theory based on the SO(3,2) gauge
group.

We exploit now the Chern–Simons formulation for canonically and asymptoti-
cally analyzing CSG. The fact that SO(3,2) contains SO(2,2) as a subgroup, suggests
that we can study AdS boundary conditions in this setup.1 Introducing the following
state dependent one forms,

t0 D T1dt � T2d' ; t1 D T1d' � T2dt and

p0 D P2dt � P1d' ; p1 D P1dt � P2d' ; p2 D P3.dt C d'/ ;
(12.22)

we present the AdS boundary conditions as follows [28],

e0 D �`ef �edt � p0 C t0e�� ; e1 D �`ef �ed' � p1 � t1e�� ;
e2 D �`ef �d � p2e�� ;
	0 D 1

2`
e�f �edt C p0 C t0e�� ; 	1 D 1

2`
e�f �ed' C p1 � t1e�� ;

1The same statement holds for SO(3,1), ISO(2,1) and SO(2,1)�R as subgroups of SO(3,2)
corresponding to de Sitter, Flat and Lobachevsky boundary conditions [28].
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	2 D 1
2`
e�f �dC p2e�� ;

!0 D e d' C t1e� ; !1 D e dt � t0e� ;

!2 D 0 ; � D df .t; '/� p2e� :

Solving the flatness conditions (12.2) we find, (@ WD @C, N@ WD @�)

T1 D � 12 .L .xC/ � NL .x�//; T2 D 1
2
.L .xC/C NL .x�//;

P1 D �P2 DP.t; '/; P3 D N@P;
� NL � N@2�P D 0 : (12.23)

These are the analogue of (12.10). A general Lie algebra-valued generator of gauge
transformations is

" D aPa C �aJa C �aKa C 
D: (12.24)

The boundary conditions given in (12.23) are preserved by gauge transformations
(12.24) when,

0D`ef .a2eC.a1Ca2/PCa4e�/ ; �0D� 1
2`
e�f .a2e�.a1Ca2/PCa4e�/;

1D`ef .a1e�.a1Ca2/PCa3e�/ ; �1D� 1
2`
e�f .a1eC.a1Ca2/PCa3e�/;

2D�`ef �@'a1Cd1e�� ; �2D 1
2`
e�f �@'a1�d1e�� ;

�0D�a1eCa3e� ; �1D�a2eCa4e� ; �2D@'a2 ; 
D˝Cd1e�:

where the following relations should hold,

a2 D � 12
�
�.xC/C N�.x�/

�
; a1 D � 12

�
�.xC/� N�.x�/

�
; d1 D �N@P�.xC/

a3 D T2a2 � T1a1 � 1
2
@2'a1; a4 D T1a2 � T2a1 C 1

2
@2'a2: (12.25)

The variation of the state dependent functions in (12.23) with respect to these
parameters are,

ıL D @L � C 2L @� � 1
2
@3� ; ı NL D N@ NL N� C 2 NL N@N� C 1

2
N@3 N� ;

ıP D @P� C 3
2
P@� C N@P N� � 1

2
P N@N� ; ı˝f D ˝ ; (12.26)

which are the analogue of (12.17). The conserved charges associated to these
variations are given by,

Q D kCS

2�

Z
d' Œ�.xC/L .xC/C N�.x�/ NL .x�/C˝.xC/@'f .xC/� : (12.27)

Defining the generators of these global symmetries as,



318 H. Afshar et al.

Ln D QGŒ� D einxC

�; NLn D QGŒN� D einx�

� and Jn D QGŒ˝ D einxC

� ;

(12.28)

we compute the Poisson brackets and convert Poisson brackets into commutators
by the prescription ifq; pg D Œ Oq; Op�. The resulting algebra is Vir ˚ Vir ˚ Ou.1/k .
Finally, we Sugawara-shift the quantum L generator

Lm ! Lm C 1

4k

X
n2Z
W JnJm�n W (12.29)

In conclusion, the asymptotic symmetry algebra has the following non-zero
commutators:

ŒLn; Lm� D .n �m/LnCm C c C 1
12

.n3 � n/ ınCm;0

Œ NLn; NLm� D .n �m/ NLnCm C Nc
12
.n3 � n/ ınCm;0

ŒLn; Jm� D �mJnCm
ŒJn; Jm� D 2k n ınCm;0 (12.30)

The central charges are given by c D �Nc D 12 k with k D kCS=2. Note the
quantum shift by one in the central charge of one copy of the Virasoro algebra.
This is due to the normal ordering of J ’s introduced in (12.29). The relative sign
of two central charges is a sign of non-unitarity. This is consistent with the parity
odd nature of this theory; as mentioned before, flat boundary conditions seem more
suitable for unitarity in the asymptotic analysis of parity odd models. For a detailed
asymptotically flat analysis of CSG as a Chern–Simons gauge theory of SO(3,2) see
[28] and in the metric formulation see Sect. 12.4 and [32].

12.2.2 Higher Spin Theories

In the introduction we alluded to some similarities between CSG and higher spin
theories. In this subsection we make this statement more concrete and summarize
some important properties of such theories.

Even though it is easy to write down the (Fronsdal-)equations [33] for free
massless higher spin fields, the coupling of the fields for spins greater than two
to gravity is severely constrained by various no-go theorems (for a review see
[34]). Fradkin and Vasiliev [35] showed that consistent interacting higher spin gauge
theories involving gravity need to be defined on a curved background and involve
an infinite tower of massless higher spin fields [36], see e.g. [37, 38] for reviews.
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One interesting aspect of higher spin gauge fields is that they might be connected
to string theory in the tensionless limit in which the massive excitations of string
theory become massless. It is conjectured that string theory is a broken phase of a
higher spin gauge theory. For more details see [39] and references therein.

Another interesting aspect is that holographic correspondences between higher
spin theories and field theories can be formulated, such as the conjectured duality
in the large N limit of the critical three-dimensionalO.N/ model and the minimal
bosonic higher spin theory in AdS4 [40–42] (for a review of various impressive
checks of this conjecture see [43]).

We focus now on 2C 1 dimensions where the situation simplifies significantly.
An action is known [44], namely the sum of two Chern–Simons actions (12.1)
with opposite levels with the gauge group SL.N/ which is a natural generalization
of EHG and corresponds to fields of spin s D 3; 4; : : : ; N coupled to gravity.
This consistent truncation to a finite number of higher spin fields is not possible
in higher dimensions [45]. Moreover, the dual field theories are two-dimensional,
which allows a high degree of analytic control.

The Brown–Henneaux type of analysis reviewed in the previous subsection
generalizes to higher spin fields for asymptotic AdS3 [11, 12, 46, 47] and leads to
asymptotic WN � WN [48, 49] symmetry algebras. Using the infinite dimensional
higher spin algebras hsŒ	� ˚ hsŒ	� as gauge algebra we get gravity coupled to
massless fields with spins s D 3; 4; : : : ;1 and, again for AdS3, asymptotic
symmetries of the form W1Œ	� �W1Œ	�.

Gaberdiel and Gopakumar proposed [50] that the hsŒ	� theory coupled to an
additional complex scalar field on AdS3 is dual to a specific large-N limit of WN

minimal models on the CFT side. The duality is reviewed in [51].
Since the BTZ black hole can also be generalized to higher spin theories,

new questions arise concerning gauge invariant characterizations of observables—
like in CSG there are gauge symmetries that act on the metric but are not
diffeomorphisms—and black hole thermodynamics (for a review of the proposed
answers see [52, 53]).

An interesting possibility that we will exhibit in the next section—first for
CSG and then for higher spin theories—is to realize higher spin holography for
backgrounds other than AdS3 [17], see [18, 54–56] for explicit constructions.

12.3 Lobachevsky Holography

Lobachevsky holography refers to asymptotic expansions of the line-element of the
form

ds2 D ˙dt2 C d2 C sinh2 d'2 C : : : (12.31)

where the ellipsis refers to suitable expressions subleading as  ! 1. Without
subleading terms the line-element (12.31) describes a direct product manifold of the
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two-dimensional Lobachevsky plane H2 (famously depicted by M.C. Escher in his
paintings “Circle Limits”) and a line or S1 corresponding to the time-direction (with
upper sign: Euclidean time). Which subleading expressions are “suitable” depends
on the specific theory.

In [57] boundary conditions suitable for CSG were formulated and their consis-
tency was checked. Performing the Brown–Henneaux type of analysis reviewed in
Sect. 12.2.1 then leads to the asymptotic symmetry algebra

ŒLn; Lm� D .n �m/LnCm C c

12
.n3 � n/ ınCm;0

ŒLn; Jm� D �mJnCm
ŒJn; Jm� D 2k n ınCm;0 : (12.32)

The value of the central charge, c D 24k, is compatible with the limiting case of
warped AdS holography [58]. The algebra above is similar to the AdS asymptotic
symmetry algebra (12.30), with the following differences: there is no second copy
of the Virasoro algebra and no quantum shift by one in the central charge. The
appearance of a single Virasoro algebra and a Ou.1/ current algebra suggests that
the dual field theory, if it exists, is a warped CFT [59]. Some checks and aspects
of this proposal—consistency of canonical charges, one-loop partition function,
identification of non-perturbative states, aspects of the Lobachevsky$ field theory
map—are discussed in [57], but many open issues remain (some of which are also
mentioned in that paper).

Amusingly, the higher spin side of the Lobachevsky story seems more straight-
forward, so let us switch now to higher spin theories. The first explicit example of
non-AdS holography was worked out in [18] for spin-3 gravity (for more details see
[54]). In this example one considers a bulk metric that is asymptotically H2 � R. In
order to succeed it is crucial that the embedding of sl.2/ into sl.3/ yields at least
one singlet under the sl.2/. Otherwise it turns out that one cannot reproduce the
correct dt2 term in the line-element (12.31). The unique viable choice for spin-3
gravity is then the non-principal embedding of sl.2/ into sl.3/ (also called diagonal
embedding). In this way we reproduce (12.31) (up to subleading terms) in the limit
!1.

Besides the sl.2/ part given by the generatorsLi with i D 0;˙1 this embedding
contains the singlet S and “colored” doublets  j̇ with j D ˙ 1

2
. We write the

connections as

a� D Oa.0/� C a.0/� C a.1/� and Na� D ONa.0/� C Na.0/� C Na.1/� : (12.33)

One set of connections reproducing (12.31) in the large  limit is given by

Oa.0/ DL0; Oa.0/' D �
1

4
L1; ONa.0/ D �L0; ONa.0/' D �L�1; ONa.0/t D

p
3S

(12.34a)
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a.0/' D
2�

k

�
3

2
W0.'/S CW C

1
2

.'/ C
� 1
2

�W �
1
2

.'/ �
� 1
2

�L .'/L�1
�
; (12.34b)

Na.0/' D
2�

k

�
3

2
NW0.'/S C NW C

1
2

.'/ C
� 1
2

C NW �
1
2

.'/ �
� 1
2

C NL .'/L�1
�
; (12.34c)

Oa.0/t Da.0/ D a.0/t D Na.0/ D Na.0/t D 0; (12.34d)

a.1/� DO.e�2/ D Na.1/� ; (12.34e)

where the Oa.0/� . ONa.0/� / describe the part of the connection that reproduces the

background, a.0/� . Na.0/� / state dependent fluctuations that are of leading order for

large  and a.1/� . Na.1/� / are subleading terms.
As in the example in Sect. 12.2.1, in order to check whether or not the boundary

conditions lead to interesting physics one has to find gauge transformations that
preserve these boundary conditions and check that the resulting canonical boundary
charge is finite at the boundary, nontrivial and conserved in time. After having
determined a canonical boundary charge which satisfies these conditions one can
determine the asymptotic symmetry algebra on the level of Poisson brackets. One
can then replace if
; 
g ! Œ
; 
� and expand the fields appearing in (12.34) in terms of
their Fourier modes in order to obtain the (semi-classical) symmetry algebra which
determines essential properties of the dual quantum field theory.

In the case of the boundary conditions (12.34) the asymptotic symmetry algebra
obtained this way consists of one copy of the semi-classical (large values of kCS)
W

.2/
3 algebra, also known as Polyakov-Bershadsky Algebra [60, 61] and one copy

of an affine Ou.1/ algebra. This is the anticipated spin-3 generalization of the CSG
result (12.32).

Since the W
.2/
3 algebra is an infinite dimensional, non-linear, centrally extended

algebra one has to introduce normal ordering prescription for the non-linear terms if
we are interested in the regime where kCS is of order one, i.e., in the quantum regime.
The structure constants of the W

.2/
3 algebra are functions of kCS. Hence one has to

check whether or not the algebra still satisfies the Jacobi identities after introducing
normal ordering. And indeed, in order to be compatible with the Jacobi identities,
some of the structure constants and the central charges obtain O.1/ corrections
in the quantum regime. The final result for the asymptotic symmetry algebra for
connections obeying (12.34) is W .2/

3 ˚ Ou.1/.
After having found the quantum asymptotic symmetry algebra of spacetimes that

are asymptotically H2�R one can also ask whether or not there are unitary represen-
tations of this algebra. In the case of Lobachevsky holography it is surprisingly easy
to answer this question. There is only one value of the Chern Simons level kCS where
it is possible to obtain nontrivial unitary representations [18, 54]. The reason why
this question is so easy to answer in this case is because the states that correspond
to descendants of the “colored” doublet have to be absent, otherwise those states
would always have norms with opposite signs spoiling unitarity. This leaves only
two possible values of the level kCS with only one of them leading to a nontrivial
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theory, which can be interpreted as the theory of a free boson with a coupling
constant fixed by an additional gauge symmetry. The generalization of the unitarity
discussion to the full W .2/

N family is more involved, particularly for even N [62].

12.4 Flat Space Holography

The constructions reviewed above are all similar at a technical level. This has two
reasons. First, we were always dealing with some Chern–Simons theory (12.1)
supplemented by suitable boundary conditions (finding the latter was the main
non-trivial task). Second, we were almost exclusively concerned with asymptotic
symmetry algebras and did not specify in detail the precise field theory that is
supposed to be dual to a given gravitational or higher spin theory, other than that
it has to fall into representations of the corresponding asymptotic symmetry algebra
(given that all these symmetry algebras are infinite dimensional and have specific
values of the central charges predicted from the gravity calculation this puts already
a lot of constraints on the dual two-dimensional field theory). In addition, all the
constructions above referred to some curved asymptotic background.

In this section we go beyond this basic scenario, by allowing for non-topological
theories like topologically massive gravity, by attempting to establish a more precise
holographic correspondence to specific field theories, and by studying backgrounds
that are locally and asymptotically flat. In Sect. 12.4.1 we review attempts to
establish precise holographic correspondences between AdS quantum gravity and
specific CFTs, before addressing the flat case in Sect. 12.4.2, where we shall come
back to our starting point, CSG.

12.4.1 Introduction to Three-Dimensional Quantum Gravity
in AdS

Quantum gravity is a notoriously difficult subject. As such, one strategy to tackle
it is to consider toy models capturing some of its salient features. EHG in (2+1)-
dimensions has emerged over the years as an archetypical model for quantum
gravity in general, and AdS/CFT in particular. It differs in important respects from
its (3+1)-dimensional counterpart: it has no bulk propagating degrees of freedom,
and any solution to the equations of motion has constant curvature (i.e. is flat for
vanishing cosmological constant � WD �1=`2; for reviews, see e.g. [63–65], and
[66] p. 29 for a chronological list of references). Despite the remarkable observation
that three-dimensional gravity could itself be formulated as a Chern–Simons theory
of the form (12.1) [9, 10, 67] with a gauge group depending on �, it appeared at
first sight too simple to be able to address the conundrums of quantum gravity.
The situation changed dramatically through a series of seminal contributions in the
negatively curved case � < 0 of which we cite three hereafter.
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First, even though there are no bulk degrees of freedom, the presence of an
asymptotic boundary in AdS3 induces boundary degrees of freedom [64]. In
particular, the phase space of AdS3 gravity admits a non-trivial action of the two-
dimensional conformal group with two sets of non-trivial Virasoro charges Lṅ and
non-vanishing central charge given by c˙ D 3`

2G
. This appeared as the first hint of a

deep connection between a gravity theory in AdS space and a conformal field theory
in one dimension less.

Second, the AdS3 phase space happens to contain black hole solutions, the BTZ
black holes [68, 69] with the exciting prospect of addressing questions related to
black hole physics in a simplified setting.

Third, assuming the existence of a dual CFT2 of which BTZ black holes are par-
ticular thermal states, the BTZ Bekenstein-Hawking entropy could be reproduced
by a counting of states using the Cardy formula[70].

Despite these striking and suggestive results, the precise nature of the corre-
sponding dual CFT2 (in pure gravity) remained elusive for another 10 years. In 2007,
Witten revisited the subject and made a concrete proposal for the partition function
of the CFT dual to pure three-dimensional gravity [71]. Assuming holomorphic
factorization (motivated partially by the relation to Chern–Simons theory), he
argued from the BTZ spectrum in AdS3 gravity that the holomorphic part of the
partition function should take the form (with k D c=24 quantized to integers)

Z.q/ D
kX
rD0

arJ.q/
r ; J.q/ D 1

q
C 196884qC 
 
 
 (12.35)

where J.q/ is the unique modular-invariant function on the upper half plane, which
is holomorphic away from a single pole at the cusp. Therefore, the requirement that
the partition function be of the form

Z.q/ D Z0.q/CO.q/; Z0.q/ D q�k
1Y
nD2

1

1 � qn ; (12.36)

whereZ0.q/ captures the vacuum descendants and the “O.q/” piece the BTZ black
holes (having L0 > 0), uniquely fixes the form of the partition function. CFTs with
partition functions (12.35) are called extremal, roughly because they have as few
low-lying primaries as possible compatible with modular invariance, and display
remarkable group- and number-theoretic properties.

It happens that AdS3 gravity is simple enough that the quantum gravity partition
function can be explicitly calculated as a sum over geometries. Maloney and
Witten performed this computation [72] and found out that the result could not
be interpreted as a CFT partition function, i.e., as a trace over some CFT Hilbert
space. They concluded that either pure gravity in 2+1 dimensions simply did not
exist quantum mechanically, or that additional contributions should be included.
At any rate, the quantity they computed did not holomorphically factorize, thereby
violating one of the assumptions of [71].
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An alternative emerged few months later under the name chiral gravity [73, 74].
The idea was to modify pure gravity by supplementing if with the gravitational
Chern–Simons term (12.3). The resulting theory is called Topologically Massive
Gravity (TMG) [13, 75] with action

STMG D 1

16�

Z
d3x
p�g �RC 2

`2

� � 1

8k�
SCSG : (12.37)

One effect of the additional term (12.3) is to shift the values of the (asymptotically)
conserved charges as compared to EHG. For Brown–Henneaux boundary conditions
[76]

�grr D frr

r4
CO.

1

r5
/ �gr˙ D fr˙

r3
C O.

1

r4
/ �g˙˙ D f˙˙ C O.

1

r
/

(12.38)

the corresponding Virasoro charges are given by

Lṅ D
2

`

�
1˙ 1

�`

�Z
einx˙

f˙˙d� (12.39)

with the corresponding central extensions [77]

c˙ D
�
1˙ 1

�`

�
3`

2G
: (12.40)

Therefore, at the critical point �` D 1, one copy of the Virasoro algebra has
vanishing central charge. If the theory is unitary then it must be chiral and one
is left with a single copy of the Virasoro algebra. Alternatively, if the theory is non-
unitary one encounters the structure of a specific type of logarithmic CFT where one
chiral part of the stress tensor acquires a logarithmic partner [23, 24]. In the former
case, holomorphic factorization would be explicitly implemented in the resulting
theory, dubbed “chiral gravity” [78] (see also [79]). Chiral gravity (which could
exist as a unitary truncation of the non-unitary logarithmic CFT that is dual to TMG
at the critical point �` D 1) therefore appears as a candidate for the simplest and
potentially solvable model including quantum black holes.

12.4.2 Flat Space Chiral Gravity

The above considerations regarded gravity theories with a negative cosmological
constant. Could a similar logic be used to argue that flat space could be dual to a
field theory of some kind? And if yes, what could it be?
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It is tempting to use as guiding principle the ingredients that led to the first
glimpses of AdS/CFT: asymptotic symmetries. The first caveat is that the asymptotic
structure of flat space is more involved than that of AdS spaces (see e.g. [80]).
However, the structure of its various asymptotic symmetry groups has been studied
over the years, starting with [81]. For the case that will interest us in the following,
the asymptotic symmetries of (2+1)-dimensional gravity at null infinity form the
so-called BMS3 algebra [82], with commutation relations

ŒLm; Ln� D .m � n/LnCm C c1

12
.n3 � n/ ınCm;0 (12.41a)

ŒLm; Mn� D .m � n/MnCm C c2

12
.n3 � n/ ınCm;0 (12.41b)

ŒMm; Mn� D 0 (12.41c)

It is generated by Virasoro generators Ln and supertranslations Mn. The latter are
the modes of diffeomorphisms preserving the following boundary conditions at null
infinity [32]:

guu D huu CO.1r / gur D �1C hur=r CO. 1r2 / (12.42a)

gu� D hu� CO.1r / grr D hrr=r
2 CO. 1

r3
/ (12.42b)

gr� D h1.�/C hr�=r CO. 1r2 / (12.42c)

g�� D r2 C .h2.�/C uh3.�//r CO.1/ (12.42d)

The flat counterpart of (12.39) is then given by

Mn D 1

16�G

Z
d� ein�

�
huu C h3

�
(12.43a)

Ln D 1

16�G�

Z
d� ein�

�
huu C h3

�C 1

16�G

Z
d� ein�

��inuhuu C inhur C 2hu� C @uhr� � h3h1 � in@�h1
�

(12.43b)

and the central extensions in (12.41) are computed as[32]2

c1 D 3

�G
; c2 D 3

G
: (12.44)

The phase space defined by the boundary conditions (12.42) contains an interest-
ing two-parameter family of solutions recognized some time ago as the shift-boost
orbifold of flat space [85]:

2It should be straightforward to generalize these results to other massive gravity theories like “new”
massive gravity [83, 84].
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ds2 D 8m du2 � 2drduC 8j d�duC r2d�2: (12.45)

They represent cosmological solutions (here expressed in Eddington–Finkelstein
coordinates)—in particular, they have a cosmological horizon, an associated
Bekenstein–Hawking entropy and a Hawking temperature [86, 87]. We therefore
have a classical phase space endowed with an action of an infinite-dimensional
BMS3 symmetry, and by analogy with the AdS3 situation, one could expect that
upon quantization states will form representation of that algebra, i.e. quantum
gravity in flat space would be related to a BMS3-invariant field theory. Although
some hints in this direction have been given, it is fair to say these types of field
theories remain relatively unexplored. Some aspects of the representation theory
have been discussed in [88–92]. What is lacking as opposed to the exhaustive
study of two-dimensional CFTs is the presence of concrete examples of such field
theories. We review now a first concrete example of holography in flat spacetimes.

To this end, there is a limit that make our lives easier. Consider

�! 0 ; G !1 keeping �G WD 1

8k
finite: (12.46)

In that limit, the Mn charges become trivial, the central term c2 vanishes and the
BMS3 algebra reduces to a single copy of a Virasoro algebra! This can be further
checked by looking at null vectors in the field theory and observing that in the above
limit, there is indeed a consistent truncation of the representations of the algebra
(12.41) to simply the Virasoro module [32]. On the bulk side, the Bekenstein-
Hawking entropy of the above solutions (taking into account the Chern–Simons
contribution [77, 93–95]) is

S D 8�kp2m D 2�
r
c1L0

6
(12.47)

i.e., precisely a chiral half of the Cardy formula. This provides a check on the
correctness of flat space holography.

One can go further. The vacuum flat space solution lies in (12.45) for m D � 1
8

and j D 0, i.e., for L0 D �k D � c
24

, while the cosmological solutions have
L0 > 0. The spectrum therefore share strong similarities with that of AdS3 gravity,
as there is a gap between the vacuum and the first primary state. One can then
follow the same reasoning as Witten, arguing that modular invariance uniquely fixes
the partition function to be of the form (12.35). As a consequence, we can proceed
with a comparison analogous to the one done in [71] for BTZ black holes. Consider
a cosmological solution with L0 D 1, at k D 1. Its (semi-classical) entropy is
SBH D 4� � 12:57. On the other hand, in the expansion (12.35), 196884 is the
total number of states with L0 D 1, representing one descendant of the vacuum
state and 198883 primaries creating the corresponding cosmological solution. The
entropy is thus SCFT D ln 196883 � 12:19, which matches with the geometrical
entropy within a few percents (perfect agreement was not be expected since the
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semi-classical entropy is valid for large k and we used k D 1; the agreement gets
better as k increases). This leads us to conjecture that CSG with the above boundary
conditions—a theory which we call flat space chiral gravity—is dual to a chiral CFT
with c D 24k.

This conjecture can be sharpened by further arguments, which we now present.
The presence of the finite sized gap leads to the expectation that the dual CFT is an
extremal CFT with c D 24k. An important caveat is that such CFTs need not exist
for arbitrary values of k [96, 97], but at least for k D 1 the extremal CFT that could
serve as a gravity dual has been previously identified by Witten [71] as the Monster
CFT [98]. So we can sharpen our conjecture to the following [32]:
Flat space chiral gravity at Chern–Simons level k D 1 is dual to the Monster CFT.
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Chapter 13
Gravitational Duality, Topologically Massive
Gravity and Holographic Fluids

P. Marios Petropoulos

Abstract Self-duality in Euclidean gravitational set ups is a tool for finding
remarkable four-dimensional geometries. From a holographic perspective, self-
duality sets a relationship between two a priori independent boundary data: the
boundary energy–momentum tensor and the boundary Cotton tensor. This relation-
ship, which can be viewed as resulting from a topological mass term for gravity
boundary dynamics, survives under the Lorentzian signature and provides a tool
for generating exact bulk Einstein spaces carrying, among others, nut charge. In
turn, the holographic analysis exhibits perfect-fluid-like equilibrium states and the
presence of non-trivial vorticity allows to show that infinite number of transport
coefficients vanish.

13.1 Introduction

Gravitational duality is known to map the curvature form of a connection onto
a dual curvature form. It allows for constructing self-dual, four-dimensional,
Euclidean-signature geometries, which are in particular Ricci-flat. Many exact
solutions to Einstein’s vacuum equations have been obtained in this manner,
such as Taub–NUT [1], Eguchi–Hanson [2, 3], or Atiyah–Hitchin [4] gravitational
instantons.

The remarkable integrability properties underlying the above constructions have
created the lore that in one way or another, integrability is related with self-duality,1

1Quoting Ward (1985, [5]):

. . . many (and perhaps all?) of the ordinary or partial differential equations that are regarded
as being integrable or solvable may be obtained from the self-duality equations (or its
generalizations) by reduction.
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in a general and somewhat loose sense. In particular, this statement applies to con-
formal self-duality conditions, either for Kähler or for Einstein spaces, which have
delivered many exact geometries (LeBrun, Fubini–Study, Calderbank–Pedersen,
Przanowski–Tod, Tod–Hitchin, . . . [6–19]).

Conformally self-dual spaces can be Einstein—called then quaternionic. They
can be asymptotically anti-de Sitter and analyzed from a (Euclidean) holographic
perspective. Hence, it is legitimate to ask (i) how self-duality reveals holographically
i.e. on the boundary data, (ii) whether its underlying integrability properties extend
to Lorentzian three-dimensional boundaries and allow to obtain exact bulk Einstein
spaces, and (iii) what the physical content is for a boundary fluid emerging from
such exact bulk solutions.

The aim of these lecture notes is to provide a tentative answer to the above
questions. They exhibit our present understanding of the subject, as it emerges
from our works [20–23]. The exact reconstruction of the bulk Einstein geometry or,
equivalently, the resummability of the Fefferman–Graham expansion are achieved
assuming a specific relationship among the two a priori independent boundary data,
which are the boundary metric g�� and the boundary momentum F�� interpreted as
the boundary field theory energy–momentum tensor expectation value T��2:

wT�� C C�� D 0 : (13.1)

Here C�� is the Cotton–York tensor of the boundary geometry. In the Euclidean
case, (anti-)self-duality corresponds precisely to the choice w D ˙3k3=� (k is related
to the cosmological constant,� D �3k2, and � to Newton’s constant, � D 3k=8�GN).
Equation (13.1) appears as the natural extension of this duality—and integrability,
in the spirit of the above discussion—requirement, irrespective of the signature of
the metric, with arbitrary real w. This answers questions (i) and (ii). Furthermore,
the boundary condition (13.1) can be recast as

ıS

ıg��
D 0 (13.2)

with

S D Smatter C 1

w

Z
!3.
/ ; (13.3)

where Smatter is the action of the holographic boundary matter and !3.
/ the
Chern–Simons density (
 is the boundary connection one-form). The reader will
have recognized the dynamics of matter coupled to a topological mass term for
gravity [24]. Exact bulk Einstein spaces satisfying this boundary dynamics turn
out to provide laboratories for probing transport properties of three-dimensional

2The relation is T�� D �F�� , given in Eq. (13.22).
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holographic fluids, and this is an important spin-off of the present analysis that will
answer question (iii).

13.2 The Ancestor of Holography

We will here review some basic facts about gravitational duality and their applica-
tion to the filling-in problem, which can be considered as the ancestor of holography.
All this will be illustrated in the example of asymptotically AdS Schwarzschild
Taub–NUT geometry.

13.2.1 Curvature Decomposition and Self-Duality

The Cahen–Debever–Defrise decomposition, more commonly known as
Atiyah–Hitchin–Singer [25, 26],3 is a convenient taming of the 20 independent
components of the Riemann tensor. In Cartan’s formalism, these are captured by a
set of curvature two-forms (a; b; : : : D 0; : : : ; 3)

Ra
b D d!ab C !ac ^ !cb D

1

2
Rabcd�

c ^ �d ; (13.4)

where f�ag are a basis of the cotangent space and !ab D � a
bc�

c the set of
connection one-forms. We will assume the basis f�ag to be orthonormal with respect
to the metric

ds2 D ıab�
a�b ; (13.5)

and the connection to be torsionless and metric—this latter statement is equivalent
to !ab D �!ba, where the connection satisfies

d�a C !ab ^ �b D 0 : (13.6)

The general holonomy group in four dimensions is SO.4/, and (13.5) is invariant
under local transformations�.x/ such that

�a0 D ��1 a
b�

b ;

3See also [27] for a review.
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under which the curvature two-form transform as4

Ra0
b D ��1 a

cR
c
d�

d
b :

Both !ab and Rab are antisymmetric-matrix-valued forms, belonging to the repre-
sentation 6 of SO.4/.

Four dimensions is a special case as SO.4/ is factorized into SO.3/ � SO.3/.
Both connection and curvature forms are therefore reduced with respect to each
SO.3/ factor as 3 � 1 C 1 � 3, where 3 and 1 are respectively the vector
and singlet representations. The connection and curvature decomposition leads to
(	;�; �; : : : D 1; 2; 3 and �123 D 1):

˙	 D 1

2

�
!0	 C 1

2
�	��!

��

�
; A	 D 1

2

�
!0	 � 1

2
�	��!

��

�
; (13.7)

S	 D 1

2

�
R0	 C 1

2
�	��R

��

�
; A	 D 1

2

�
R0	 � 1

2
�	��R

��

�
: (13.8)

Using this decomposition, (13.4) reads:

S	 D d˙	 � �	��˙� ^˙� ; A	 D dA	 C �	��A� ^A� : (13.9)

Usually S and A are referred to as self-dual and anti-self-dual components of
the Riemann curvature. This follows from the definition of the dual forms (supported
by the fully antisymmetric symbol5 �abcd)

QRa
b D

1

2
�a d
bc Rc

d ;

borrowed from Yang–Mills. Under this involutive operation, S remains unaltered
whereas A changes sign. Similar relations hold for the components .˙;A/ of the
connection.

Following the previous reduction pattern, the basis of 6 independent two-forms
can be decomposed in terms of two sets of singlets/vectors with respect to the two
SO.3/ factors:

4Note the transformation of the connection: !a0

b D ��1 a
c!

c
d�

d
b C��1 a

cd�
c
b .

5A remark is in order here for D D 7 and 8. The octonionic structure constants  ˛ˇ
 ˛; ˇ; 
 2
f1; : : : ; 7g and the dual G2-invariant antisymmetric symbol  ˛ˇ
ı allow to define a duality relation
in 7 and 8 dimensions with respect to an SO.7/ 	 G2, and an SO.8/ 	 Spin7 respectively. Note,
however, that neither SO.7/ nor SO.8/ is factorized, as opposed to SO.4/.
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�	 D �0 ^ �	 C 1

2
�	���

� ^ �� ;

�	 D �0 ^ �	 � 1
2
�	���

� ^ �� :

In this basis, the 6 curvature two-forms S and A are decomposed as

�
S

A

�
D r

2

�
�

�

�
;

where the 6 � 6 matrix r reads:

r D
�
A CC
C� B

�
D
�
W C CC
C� W �

�
C s

6
I6 : (13.10)

The 20 independent components of the Riemann tensor are stored inside the
symmetric matrix r as follows:

• s D Tr r D 2TrA D 2TrB D R=2 is the scalar curvature.
• The 9 components of the traceless part of the Ricci tensor Sab D Rab � R

4
gab

(Rab D Rcacb) are given in CC D .C�/t as

S00 D TrCC ; S0	 D � ��

	 C�
�� ; S	� D CC

	� C C�
	� � TrCCı	� :

• The 5 entries of the symmetric and tracelessW C are the components of the self-
dual Weyl tensor, while W � provides the corresponding 5 anti-self-dual ones.

In summary,

S	 D W C
	 C

1

12
s�	 C 1

2
CC
	��

� ; (13.11)

A	 D W �
	 C

1

12
s�	 C 1

2
C�
	��

� ; (13.12)

where

W C
	 D

1

2
W C
	��

�; W �
	 D

1

2
W �
	��

�

are the self-dual and anti-self-dual Weyl two-forms respectively.
Given the above decomposition, the following nomenclature is used (see e.g. [27]

for details):

Einstein C˙ D 0 (, Rab D R
4
gab)

Ricci flat C˙ D 0; s D 0
Self-dual A D 0, fW � D 0; C˙ D 0; s D 0g
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Anti-self-dual S D 0, fW C D 0; C˙ D 0; s D 0g
Conformally self-dual W � D 0
Conformally anti-self-dual W C D 0
Conformally flat W C D W � D 0
Quaternionic spaces are Einstein and conformally self-dual (or anti-self-dual).
Conformal self-duality can also be combined with Kähler structure. In either case,
remarkable integrable structures emerge.

Quaternionic conditions can be elegantly implemented by Weyl tensor introduc-
ing the on-shell Weyl tensor, defined as the antisymmetric-matrix-valued two-from:

OW ab D Rab C k2�a ^ �b : (13.13)

Decomposing the latter à la Atiyah–Hitchin–Singer, we obtain:

OW C
	 D S	 C k2

2
�	 D W C

	 C
1

12

�
s C 6k2��	 C 1

2
CC
	��

� ; (13.14)

OW �
	 D A	 C k2

2
�	 D W �

	 C
1

12

�
s C 6k2��	 C 1

2
C�
	��

� : (13.15)

A quaternionic space is such that either OW C or OW � vanish.

13.2.2 The Filling-In Problem

A round three-sphere is a positive-curvature, maximally symmetric Einstein space
with SU.2/� SU.2/ isometry. Its metric can be expressed using the Maurer–Cartan
forms of SU.2/:

d˝2
3 D

�
�1
�2 C ��2�2 C ��3�2 (13.16)

with
8̂
<̂
ˆ̂:
�1 D sin# sin d' C cos d#

�2 D sin# cos d' � sin d#

�3 D cos# d' C d I

0 	 # 	 �; 0 	 ' 	 2�; 0 	  	 4� are the Euler angles.
A hyperbolic four-space H4 is a negative-curvature, maximally symmetric

Einstein space. It is a foliation over three-spheres and its metric reads:

ds2H4 D
dr2

1C k2r2 C k
2r2d˝2

3 :
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(we assumed Rab D �3k2gab forH4). The conformal boundary ofH4 is reached at
r !1 as

ds2H4 �!r!1 k2r2d˝2
3 :

In this sense, the round three-sphere is filled-in with H4, the latter being the only
regular metric filling-in this three-dimensional space.

The natural question to ask in view of the above is how to fill-in the more
general Berger sphere S3, which is a homogeneous but non-isotropic deformation
of (13.16):

d˝2
S3
D ��1�2 C ��2�2 C 4n2k2��3�2 (13.17)

with nk constant. This metric is invariant under SU.2/ � U.1/, respectively
generated by the Killings

8̂
<̂
ˆ̂:
�1 D � sin ' cot# @' C cos' @# C sin '

sin# @ 

�2 D cos' cot# @' C sin ' @# � cos'
sin# @ 

�3 D @' ;

and @ .
LeBrun studied the filling-in problem in general terms [8] and showed that

an analytic three-metric can be regularly filled-in by a four-dimensional Einstein
space that has self-dual (or anti-self-dual) Weyl tensor, i.e. by a quaternionic
space. In modern holographic words, LeBrun’s result states that requiring regularity
makes the boundary metric a sufficient piece of data for reconstructing the bulk.
Regularity translates into conformal self-duality, which effectively reduces by half
the independent Cauchy data of the problem, as we will see in Sect. 13.3.2.

13.2.3 A Concrete Example

LeBrun’s analysis is very general. We can illustrate it in the specific example of
the Berger sphere S3. We search therefore a four-dimensional foliation over S3,
which is Einstein. This leads to the Bianchi IX Euclidean Schwarzschild–Taub–
NUT family on hyperbolic space (i.e. with � D �3k2):

ds2 D dr2

V .r/
C �r2 � n2� ���1�2 C ��2�2�C 4n2V .r/ ��3�2 (13.18)

with

V.r/ D 1

r2 � n2
�
r2 C n2 � 2Mr C k2 �r4 � 6n2r2 � 3n4�	 ; (13.19)
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whereM and n are the mass and nut charge. Clearly the metric fulfills the boundary
requirement since

ds2 �!
r!1 r2d˝2

S3
;

where d˝2
S3

is given in (13.17).
The family of solutions at hand depends on 2 parameters, M and n, of which

only the second remains visible on the conformal boundary. In that sense, the bulk
is not fully determined by the boundary metric. However, regularity is not always
guaranteed either, as ds2 is potentially singular at r D Cn or r D �n (depending on
whether the range for r is chosen positive or negative). Actually, this locus coincides
with the fixed points of the Killing vector @ , generating the extra U.1/.6 In the
present case, these are nuts and they are removable provided the space surrounding
them is locally flat.

In order to make the above argument clear, let us focus for concreteness on r D n
(assuming thus r > 0), write r D nC � and expand the metric using momentarily �
as radial coordinate:

ds2 � d�2

V .n/C �V 0.n/
C 2n� �d#2 C sin2 #d'2

�

C4n2 �V.n/C �V 0.n/
�
.d C cos#d'/2 : (13.20)

Clearly to reconstruct locally flat space we must impose V.n/ D 0 and V 0.n/ D
1=2n. The first of these requirements is equivalent to

M D n �1 � 4k2n2� ; (13.21)

and makes the second automatically satisfied. Under (13.21) and with � D 2
p
2n�

(proper time), Eq. (13.20) reads:

ds2 � d�2 C �2

4

�
d 2 C d'2 C d#2 C 2 cos# d d'

�
;

which is indeed R
4.

We can similarly analyze the behavior around r D �n. We then reach the same
conclusion, with an overall change of sign in condition (13.21). These conditions

6In four dimensions, the fixed locus of an isometry is either a zero-dimensional or a two-
dimensional space. The first case corresponds to a nut, the second to a bolt, and both can be
removable singularities under appropriate conditions (see [28] for a complete presentation).
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are nothing but conformal (anti-)self-duality requirements, as we see by computing
the Weyl components of the curvature,W ˙, in the decomposition (13.10):

W ˙ D M � n.1 � 4k2n2/
.r � n/3

0
@�1 0 0

0 �1 0
0 0 2

1
A :

The regularity requirement for the family of Einstein spaces (13.18) is thus
equivalent to demand the space be quaternionic. In that case, the boundary metric
contains enough information for determining the bulk and solving thereby the
filling-in problem for the Berger sphere.

For the quaternionic Schwarzschild–Taub–NUT geometries (13.18) with (13.21),
the function V.r/ in (13.19) reads:

V.r/ D r � n
r C n

�
1C k2.r � n/.r C 3n/	 :

These geometries belong to the general class of Calderbank–Pedersen [19], which is
the family of quaternionic spaces with at least two commuting Killing fields.7 They
belong to a wide web of structures, and are in particular conformal to a family of
spaces, which are Kähler and Weyl-anti-self-dual with vanishing scalar curvature,
known as LeBrun geometries [29]. The limit n!1 deserves a particular attention,
as it corresponds to the pseudo-Fubini–Study8 metric on eCP2 D SU.2;1/

U.2/
. Further

holographic properties of these geometries can be found in [30, 31].

13.3 Weyl Self-Duality from the Boundary

The filling-in problem was presented as the ancestor of holography in the sense that
(i) it poses the problem of reconstructing the bulk out of the boundary and (ii) it
raises the issue of regularity as a mean to relate a priori independent boundary data.
The bonus is that in the present Euclidean approach, regularity condition appears
as conformal self-duality requirement, which in turn makes Einstein’s equations
integrable and the bulk an exact solution.

The natural question to ask at this stage is how the bulk Weyl self-duality gets
manifest on the boundary. In order to answer, we must perform a clear analysis of
the independent boundary data following Fefferman–Graham approach and recast
in these data the self-duality requirement.

7The metrics at hand are sometimes called spherical Calderbank–Pedersen, because they possess
in total four Killings, of which three form an SU.2/ algebra.
8This is the non-compact Fubini–Study. The ordinary Fubini–Study corresponds to the compact
CP2 D SU.3/

U.2/
and has positive cosmological constant.
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13.3.1 The Fefferman–Graham Expansion

The work of LeBrun [8], quoted previously in the framework of the filling-in
problem, led Fefferman and Graham to set up a systematic expansion for Einstein
metrics in powers of a radial coordinate [32, 33]. The infinite set of coefficients are
data of the boundary, expressed in terms of two independent ones: g�� and F�� .
From a Hamiltonian perspective, with the radial coordinate as evolution parameter,
g�� and F�� are Cauchy data of “coordinate” and “momentum” type. The former is
of geometric nature, the latter is not. In the holographic language, g�� corresponds
to a non-normalizable mode and is the boundary metric, whereas F�� is related to
a normalizable operator and carries information on the energy–momentum-tensor
expectation value of the boundary field theory:

T�� D 3k

8�GN
F�� ; (13.22)

where GN is four-dimensional Newton’s constant.
The method of Fefferman–Graham is well suited for holography and has led to

important developments (see e.g. [34–36]). It nicely fits the gravito-electric/gravito-
magnetic split Hamiltonian formalism of four-dimensional gravity [37, 38]. In the
Euclidean, this formalism is basically adapted to the self-dual/anti-self-dual splitting
of the gravitational degrees of freedom presented in Sect. 13.2.1.

Let us summarize here the basic facts, leaving aside the rigorous and complete
exhibition that can be found in the above references. In Palatini formulation, the
four-dimensional (bulk) Einstein–Hilbert action reads:

IEH D � 1

32�GN

Z
M
�abcd

�
Rab C k2

2
�a ^ �b

�
^ �c ^ �d :

As we already mentioned, �a, a D r; 	 are basis elements of a coframe, orthonormal
with respect to the signature .C� C C/. The first direction r is the holographic
one, and x � .t; x1; x2/ are the remaining coordinates, surviving on the conformal
boundary—with t � x3 in the Euclidean instance (� D C).

The most general form for the coframe is

�r D N dr

kr
; �	 D N	dr C Q�	 ;

whereas the Levi–Civita connection generally reads:

!r	 D qr	dr CK 	 ; !�� D ����	
�
Q	

dr

kr
CB	

�
:

Without loss of generality, we can make the following gauge choice:

N D 1 ; N� D qr� D Q D 0 ;
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leading to the Fefferman–Graham form for the bulk metric:

ds2 D dr2

k2r2
C ��� Q�� Q�� : (13.23)

The connection is encapsulated in K � and B	. In Euclidean signature (� D C),
these are vector-valued (with respect to the holonomy SO.3/ subgroups) connection
one-forms, related to the (anti-)self-dual ones introduced in (13.7):

K	 D A	 C˙	 ; B	 D A	 �˙	 : (13.24)

The zero-torsion condition (13.6) translates in this language into

(
K	 ^ Q�	 D 0
d Q�	 D 1

krK
	 ^ dr � �	��B� ^ Q�� :

(13.25)

With the present choice of gauge, all relevant information on the bulk geometry

is stored inside
n Q�	;K 	;B	

o
. Assuming the metric be Einstein, leads to a very

specific r-expansion of these vector-valued one-forms, in terms of the boundary
data. This is the Fefferman–Graham expansion:

Q�	.r; x/ D krE	.x/C
1X
`D0

1

.kr/`C1
F 	
Œ`C2�.x/ ; (13.26)

K 	.r; x/ D �k2r E	.x/C k
1X
`D0

`C 1
.kr/`C1

F 	
Œ`C2�.x/ ; (13.27)

B	.r; x/ D B	.x/C
1X
`D0

1

.kr/`C2
B	
Œ`C2�.x/ : (13.28)

The boundary data are vector-valued one-forms. They are not all independent, and
higher orders are derivatives of lower orders (we will meet an example of this
“horizontal” relationship in a short while). Furthermore, due to the zero-torsion
condition (13.25), further “vertical” relations exist order by order amongst the three
sets. This is manifest when comparing (13.26) and (13.27), where the relations are
algebraic. The forms in (13.26) and (13.28) are also related, in a differential manner,
though.

The form E	 is the boundary coframe. It is the first independent coefficient and
it allows to reconstruct the three-dimensional boundary metric:

ds2bry. D lim
r!1

ds2

k2r2
D ���E�E� :



342 P.M. Petropoulos

The one-form B� appearing in the expansion of the magnetic component of the
bulk connection, Eq. (13.28), is the boundary Levi–Civita connection, differentially
related to the coframe (boundary zero-torsion condition):

dE	 D �	��B� ^E� :

Other forms such as F�

Œ2� D F
�

Œ2��E
� or B�

Œ2� D B
�

Œ2��E
� are also geometric,

respectively related to the Schouten and Cotton–York tensors9:

S�� D �2k2F ��

Œ2� ; C �� D 2k2B��

Œ2� : (13.29)

There is again a differential relationship among the two, following basically from
the bulk zero-torsion condition (13.25), since by definition

C�� D ���rS�� (13.30)

(��� D ���=
pjgj).

Other curvature tensors of arbitrary order appear in the Fefferman–Graham
expansion, all differentially related to the ones already described above. These
tensors do not exhaust, however, all coefficients of the series (13.26), (13.27) and
(13.28), as some infinite sequences of those are not of geometric nature, i.e. are
not determined by the boundary metric itself (or by the coframe E�). Instead, they
follow differentially from the second independent piece of data, F � � F�

Œ3�, related
to the energy–momentum expectation value according to (13.22). The interested
reader will find a more complete exhibition of the Fefferman–Graham expansion in
the literature, and particularly in [37, 38] for the gravito-electric/gravito-magnetic
split formalism.

13.3.2 Self-Duality and Its Lorentzian Extension

Riemann Delf-Duality A word on Riemann self-duality is in order at this stage,
before exploring the more subtle issue of Weyl self-duality.

Demanding the Riemann tensor be (anti-)self-dual (see end of Sect. 13.2.1)
guarantees Ricci flatness and Weyl (anti-)self-duality. Such a requirement on the
curvature is easily transported to the connection, using Eq. (13.9): the anti-self-dual
connection K� CB� (see Eq. (13.24)) of a self-dual Riemann is either vanishing

9In three dimensions, the Schouten tensor is defined as S�� D R�� � R
4
g�� , whereas the Cotton–

York tensor is the Hodge-dual of the Cotton tensor, defined in Eq. (13.30). The latter replaces the
always vanishing three-dimensional Weyl tensor. In particular, conformally flat boundaries have
zero Cotton tensor and vice versa.



13 Gravitational Duality, Topologically Massive Gravity and Holographic Fluids 343

or a pure gauge (flat). This basically removes the corresponding degrees of freedom
and gives an easy way to handle the problem via first-order differential equations.

The case of Bianchi foliations along the radial (holographic) direction, as the
example we described in Sect. 13.2.3, has been largely analyzed in the literature
(see [27] for a general discussion, [39] for Bianchi IX, or [40–42] for a more
recent general and exhaustive Bianchi analysis). The requirement of (anti-)self-dual
Riemann leads to the following equation:

K� ˙B� D 	���� ; (13.31)

where �� are the Maurer–Cartan forms of the Bianchi group, and 	�� a constant
matrix parameterizing the homomorphisms mapping SO.3/ onto the Bianchi group.
Expressing K� and B� in terms of the metric, (13.31) provides a set of first-order
differential equations that have usually remarkable integrability properties. For
concreteness, in the case of Bianchi IX (SO.3/) foliations, 	�� D 0 or ı�� . The
former case leads to the Lagrange equations, whereas the latter to the Darboux–
Halphen system. Both systems are integrable, with celebrated solutions such as
Eguchi–Hanson or BGPP for the first [2, 3, 43], and Taub–NUT or Atiyah–Hitchin
for the second [1, 4].

Weyl Self-Duality Demanding Weyl (anti-)self-duality is not sufficient for setting
K� ˙ B� as a pure gauge (flat connection). In the case of Bianchi foliations
e.g. Eq. (13.31) is still valid but 	�� is a function of the radial coordinate r , and
satisfies a first-order differential equation. The general structure of this equation
(independently of any ansatz such as a Bianchi foliation) imposes a certain behavior
and this is how Weyl (anti-)self-duality affects boundary conditions in a way that
becomes transparent in the Fefferman–Graham large-r expansion.

We are specifically interested in quaternionic spaces, which are Einstein and
conformally (anti-)self-dual. Thanks to the on-shell Weyl tensor (13.13), these
requirements are simply either OW C

	 D 0 (anti-self-dual) or OW �
	 D 0 (self-dual).

Expressions (13.14) and (13.15), combined with (13.9) and (13.24)–(13.28), allow
to establish the effect of Weyl (anti-)self-duality on the boundary one-forms. This
appears as a hierarchy of algebraic equations10

k
�
.`C 2/2 � 1	F 	

Œ`C3� ˙ .`C 2/B	
Œ`C2� D 0 ; 8` � 0

10When dealing with the Fefferman–Graham expansion together with Einstein dynamics, attention
should be payed to the underlying variational principle. This sometimes requires Gibbons–
Hawking boundary terms to be well posed. In the Hamiltonian language, these terms are generators
of canonical transformations and in AdS/CFT their effect is known as holographic renormalization.
These subtleties are discussed in [37, 38, 44–47], together with the specific role of the Chern–
Simons boundary term, which produces the boundary Cotton tensor, and in conjunction with
Dirichlet vs. Neumann boundary conditions. One should also quote the related works [48, 49],
in the linearized version of gravitational duality though.
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(the upper C sign corresponds to the self-dual case), of which only the first is
independent:

3kF	Œ3� ˙ 2B	
Œ2� D 0 : (13.32)

The others follow from the already existing horizontal differential relationships.
This algebraic equation between a priori independent boundary data is at the heart
of conformal self-duality. In terms of the boundary energy–momentum and Cotton
tensors (see (13.22) and (13.29)), Eq. (13.32) reads:

8�GNk
2T �� ˙ C�� D 0 : (13.33)

Several important comments are in order at this stage. Firstly, referring to
the original problem of Sect. 13.2.2, Eq. (13.32) provides the filling-in boundary
condition for some a priori given boundary metric (not necessarily a three-sphere as
originally studied in [8]). This condition tunes algebraically the Cauchy data (“initial
position” and “initial momentum”), in such a way that any boundary metric can be
filled-in regularly. Following the intuition developed in the example of Sect. 13.2.3,
we may slightly relax this condition and trade it for

wT �� C C�� D 0 ; (13.34)

where we now allow for any real w and not solely w D ˙8�GNk
2. The filling-in is

still expected to occur, without guaranty for the regularity though.
Secondly, as discussed in the introduction, duality is underlying integrability.

This statement is clear in the case of Riemann self-duality, where the key is the
reduction of the differential order of the equations. For conformal self-duality it
operates via an appropriate tuning of the boundary conditions, the effect of which
would be better qualified as exactness rather than integrability: the equations of
motion are not simplified, but the initial conditions select a specific corner of the
phase space, which enables for exact solutions to emerge, i.e. for the Fefferman–
Graham series to be resummable. Furthermore, even though self-duality (Riemann
or Weyl) does not apply to the Lorentzian frame,11 condition (13.34) remains
consistent for a Lorentzian boundary, and is expected, following our heuristic
arguments, to guarantee the resummability of the Fefferman–Graham expansion and
lead to exact solutions. This is not a theorem, much like everything regarding the
relationship between integrability and self-duality in general, but the idea seems to
work, as we will see in Sect. 13.4.2.

11In four-dimensional metrics with Lorentzian signature, self-duality leads either to complex
solutions, or to Minkowski and AdS4, which are both self-dual and anti-self-dual (they have
vanishing Riemann and vanishing Weyl, respectively).
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Our last comment concerns the potential developments around Eq. (13.34),
already announced, and discussed, in the introduction (Eq. (13.1)). This equation
is a boundary condition, which, however, can follow from a three-dimensional
variational principle. In order to enforce it via this principle, we must equip the
boundary field theory with specific dynamics that incorporates three-dimensional
gravity, in the form of a topological massive term, as suggested by Eqs. (13.2)
and (13.3). The first term in S is the phenomenological holographic matter action,
whereas the second is the Chern–Simons term with !3 the Lagrangian density given
in terms of the boundary connection one-form 
 :

!3.
/ D 1

2
Tr

�

 ^ d
 C 2

3

 ^ 
 ^ 


�
:

Conceptually, this is a non-trivial step as holography is not supposed a priori to
endow the boundary theory with gravitational dynamics. It raises three questions:

1. What are the allowed boundary geometries, given certain assumptions on the
energy–momentum tensor?

2. What are the bulk geometries that reproduce holographically the boundary data?
Are those exact Einstein spaces, i.e. is the corresponding Fefferman–Graham
expansion resummable in accordance with the above discussion?

3. Are there situations where gravitational degrees of freedom emerge?

We will answer questions 1 and 2, at least in some specific framework, leaving open
interesting extensions. As we will see, in some situations, the boundary geometry
is really a topologically massive gravity vacuum—as if the three-dimensional
Einstein–Hilbert term were effectively present in (13.3). We will not delve into
question 3, because this is a definitely different direction of investigation. The
interested reader may find [46] useful and inspiring regarding that issue.

13.4 Application to Holographic Fluids

The purpose of the present part is to answer questions 1 and 2 raised in Sect. 13.3.2.
Solving Eq. (13.34) is possible, provided some assumptions are made both on
the energy–momentum tensor, and on the boundary metric. These assumptions
are motivated by our goal to probe transport coefficients for holographic fluids,
without performing linear-response analysis. For that we must study equilibrium
configurations of the fluid in various exact non-trivial backgrounds and design
accordingly the boundary data. These satisfy Eq. (13.34) and are integrable i.e. the
corresponding Fefferman–Graham expansion is resummable.
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13.4.1 Fluids at Equilibrium in Papapetrou–Randers
Backgrounds

Hydrodynamic Description A given bulk configuration (geometry possibly sup-
plemented with other fields) provides a boundary geometry, and a finite-temperature
and finite-density state of the—generally unknown—microscopic boundary theory.
It has expectation value T�� for the energy–momentum tensor, satisfying

r�T �� D 0 ; (13.35)

and possibly other conserved currents. This state may be close to a hydrodynamic
configuration and is potentially described within the hydrodynamic approximation.
This assumes, among others, local thermodynamic equilibrium. For this description
to hold, it is necessary that the scale of variation of the diverse quantities describing
the fluid be large compared to any microscopic scale (such as the mean free path).
We will work in this framework and furthermore suppose the fluid neutral, as the
only bulk degrees of freedom are gravitational in our case.

The relativistic fluid is described in terms of a velocity field u.x/, as well as of
local thermodynamic quantities like T .x/; p.x/; ".x/; s.x/, obeying an equation of
state and thermodynamic identities

(
sT D "C p
d" D T ds :

All these enter the energy–momentum tensor. The energy–momentum tensor of a
neutral hydrodynamic system can be expanded in derivatives of the hydrodynamic
variables, namely

T �� D T ��.0/ C T ��.1/ C T ��.2/ C 
 
 
 ; (13.36)

where the subscript denotes the number of covariant derivatives. The validity of
this derivative expansion is subject to the above assumptions regarding the scale of
variation. The zeroth order energy–momentum tensor is the so called perfect-fluid
energy–momentum tensor:

T
��

.0/ D "u�u� C p��� ; (13.37)

where ��� D u�u� C g�� is the projector onto the space orthogonal to u. This
corresponds to a fluid being locally in equilibrium, in its proper frame.12 The

12Defining the local proper frame, i.e. the velocity field u, is somewhat ambiguous in relativistic
fluids. A possible choice is the Landau frame, where the non-transverse part of the energy–
momentum tensor vanishes when the pressure is zero. This will be our choice.
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conservation of the perfect-fluid energy–momentum tensor leads to the relativistic
Euler equations:

(
ru"C ."C p/� D 0
r?p C ."C p/a D 0 ;

(13.38)

where ru D u 
 r, � D r 
 u, r?� D �
�
� r� , and a D u 
 ru (more formulas on

kinematics of relativistic fluids are collected in App. 1).
The higher-order corrections to the energy–momentum tensor involve the

transport coefficients of the fluid. These are phenomenological parameters that
encode the microscopic properties of the underlying system. Listing them order
by order requires to classify all transverse tensors (possibly limited to traceless
and Weyl-covariant if the microscopic theory is conformally invariant) and this
depends on the space–time dimension.13 In the context of field theories, the
transport coefficients can be determined from studying correlation functions of
the energy–momentum tensor at finite temperature in the low-frequency and
low-momentum regime (see for example [54]).

Equilibrium and Perfect Equilibrium Studying fluids at equilibrium on non-
trivial backgrounds can provide information on their transport properties. A fluid in
global thermodynamic equilibrium14 is described by a stationary solution15 of the
relativistic equations of motion (13.35), assuming that such solutions exist. Finding
solutions to these equations is generally a hard task, in particular because most of
the transport coefficients are unknown. As it will become clear in a short while,
the concept of perfect equilibrium provides a natural way out, giving access to
non-trivial information about transport properties.

The prototype example, where global thermodynamic description applies, is the
one of an inertial fluid in Minkowski background with globally defined constant
temperature, energy density and pressure. In this case, irrespective of whether the
fluid itself is viscous, its energy–momentum tensor, evaluated at the solution, takes
the zeroth-order (perfect) form (13.37) because all derivatives of the hydrodynamic
variables vanish. On the one hand, this equilibrium situation is easy to handle
because the relevant equations are the zeroth-order ones, (13.38); on the other hand,
it does not allow to learn anything about transport properties because the effect of

13We recommend [50,51] for a recent account of that subject. Insightful information was also made
available thanks to the developments on fluid/gravity correspondence [52, 53].
14This should not be confused with a steady state, where we have stationarity due to a balance
between external driving forces and internal dissipation. Such situations will not be discussed here.
15It is admitted that a non-relativistic fluid is stationary when its velocity field is time-independent.
This is of course an observer-dependent statement. For relativistic fluids, one could make this more
intrinsic saying that the velocity field commutes with a globally defined time-like Killing vector,
assuming that the later exists. Note also that statements about global thermodynamic equilibrium
in gravitational fields are subtle and the subject still attracts interest [55].
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transport is washed out by the geometry itself. If we insist keeping Minkowski as a
background, the only way, which would give access to the transport coefficients, is
to perturb the fluid away from its global equilibrium configuration.

Although naive, the equilibrium paradigm in Minkowski has the virtue to suggest
an alternative general method that may fit certain classes of fluids. It indeed raises a
less naive question: are there other situations of fluids on gravitational backgrounds,
where the hydrodynamic description is also perfect i.e. the energy–momentum
tensor, in equilibrium, takes the perfect form (13.37) solving Eqs. (13.38)?

As anticipated, we call these special configurations perfect-equilibrium states.
For these configurations to exist, all terms in (13.36), except for the first one,
must vanish, either because the transport coefficients are zero, or because the corre-
sponding tensors vanish kinematically—requiring in particular a special relationship
between the fluid’s velocity and the background geometry. It should be stressed that
the fluid in perfect equilibrium is not perfect—the equilibrium is.

At this stage of the presentation, the question to answer is whether fluids
exist, which can exhibit, on certain backgrounds, perfect-equilibrium configura-
tions. Holography and the methods discussed in Sects. 13.2 and 13.3 for finding
exact bulk solutions provide the tools for this analysis. The strategy to follow is
straightforward:

• Choose a class of backgrounds possessing a time-like Killing vector �.
• Assume perfect equilibrium and show that indeed perfect Euler Eqs. (13.38) are

solved for a conformal fluid i.e. for a fluid such that " D 2p. A hint for solving
them is to impose that the fluid velocity field u is aligned with �.

• Impose the “self-duality” condition (13.34) and restrict the family of back-
grounds at hand. The three-dimensional geometries obtained in that way are
called perfect geometries because their Cotton–York tensor is of the perfect-fluid
form.

• Use the Fefferman–Graham expansion to reconstruct the four-dimensional bulk
geometry, hoping indeed that Eq. (13.34) acts as an integrability condition,
allowing for resummation of the series into an exact Einstein space. This is
crucial for sustaining the claim that we are describing a holographic conformal
fluid behaving exactly as a perfect fluid.

If this procedure goes through with genuinely non-trivial geometries, it enables
us to probe transport properties of the holographic fluid despite its global equi-
librium state: all transport coefficients coupled to Weyl-covariant, traceless and
transverse tensors T�� that are non-vanishing and whose divergence is also
non-vanishing, when evaluated in the perfect-equilibrium solution, must be zero.
We call such tensors dangerous tensors. Listing them requires the knowledge of
the specific perfect geometry and of the kinematic configuration of the fluid.16 Any
fluid, which would have non-vanishing corresponding transport coefficient, would
not be in equilibrium in the configuration at hand. This may occur for transport

16More data are available on the dangerous tensors in certain classes of geometries in [23].
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coefficients of any order in the expansion of the energy–momentum tensor, as
dangerous tensors appear at arbitrarily large derivative order. Therefore the insight
gained in this manner on the transport properties of the holographic fluid, concerns
usually infinite series of coefficients. This is a non-trivial piece of information about
the conformal fluid at hand, and a statement about the underlying microscopic
theory.

There are non-trivial backgrounds (Minkowski space being a trivial example)
where no dangerous tensors are present. However, one can also find a large class of
backgrounds with a unique time-like Killing vector field, which have infinitely many
non-zero dangerous tensors; those allow to probe an infinite number of transport
coefficients. It is not clear at present whether all these backgrounds exhaust the
perfect geometries. Nevertheless, the question of whether our analysis regarding
all possible transport coefficients is exhaustive or not requires more work. It is
clear that further insight on this matter can only be gained by perturbing the
perfect-equilibrium state.

Perfect Equilibrium in Papapetrou–Randers Backgrounds A stationary
three-dimensional metric can be written in the generic form (x D �

x1; x2
�

and
i; j; : : : D 1; 2)

ds2 D B.x/2 ��.dt � bi .x/dxi /2 C aij.x/dxidxj
�
; (13.39)

where B; bi ; aij are space-dependent but time-independent functions. These metrics
were introduced by Papapetrou in [56]. They will be called hereafter Papapetrou–
Randers because they are part of an interesting network of relationships involving
the Randers form [57]. These metrics admit a generically unique time-like Killing
vector, � � @t , with norm k�k2 D �B.x/2.

At this stage of the analysis, we would like to restrict ourselves to the case where
the Killing vector is normalized, i.e. where B is constant and can therefore be
consistently set to 1. This is a severe limitation, because it excludes equilibrium
situations where the temperature or the chemical potential are x-dependent.17

However, it illustrates the onset of perfect equilibrium configurations, and allows to
establish a wide class of perfect geometries, intimately connected with holography.

In the background (13.39) (with B D 1), the vector � D @t , satisfies

r.���/ D 0 ; ���
� D �1 :

17Remember that inside a stationary gravitational field, under certain conditions, global thermo-
dynamic equilibrium requires T

p�g00 be constant [58]. Here
p�g00 D B . Holographically, if

the rescaling of the boundary metric by B.x/ (as in (13.39)) is accompanied with an appropriate
rescaling of the energy–momentum tensor, the bulk geometry is unaffected, and B.x/ is generated
by a bulk diffeomorphism.
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We leave as an exercise to show that congruences defined by � have vanishing
acceleration, shear and expansion (see App. 1), but non-zero vorticity18 ! D 1

2
d� ,

!�� D r��� . Then, it is easy to show that a solution of the perfect Euler equations
(13.38), for a conformal fluid is:

u D � ; " D 2p D constant ; T D constant ; s D constant : (13.40)

Therefore a fluid in perfect equilibrium will align its velocity field19 u with the
vector � D @t , while thermalize at everywhere-constant p and T . Fluid worldlines
form a shearless and expansionless geodesic congruence.

The normalized three-velocity one-form of the fluid at perfect equilibrium is

u D �dt C b ; (13.41)

where b D bidxi . We will often write the metric (13.39) as

ds2 D �u2 C d`2 ; d`2 D aij dxidxj : (13.42)

A conformal fluid in perfect equilibrium on Papapetrou–Randers backgrounds has
the energy–momentum tensor

T .0/�� dx�dx� D p �2u2 C d`2
�

(13.43)

with the velocity form being given by (13.41) and p constant. We will adopt the
convention that hatted quantities will be referring to the two-dimensional positive-

definite metric aij, therefore Or for the covariant derivative and ORij dxidxj D OR
2

d`2

for the Ricci tensor built out of aij. We collect in App. 2 some useful formulas
regarding Papapetrou–Randers backgrounds and the kinematics of fluids at perfect
equilibrium.

Let us close this chapter by insisting once more on the meaning of the
perfect-equilibrium configuration (13.40) for a conformal fluid that is not a priori
perfect. For this configuration to be effectively realized, all higher-derivative

18Vorticity is inherited from the fact that @t is not hypersurface-orthogonal. For this very
same reason, Papapetrou–Randers geometries may in general suffer from global hyperbolicity
breakdown. This occurs whenever regions exist, where constant-t surfaces cease being space-like,
and potentially exhibit closed time-like curves. All these issues were discussed in detail in [20–22].
19One important point to note is that in perfect equilibrium we have no frame ambiguity in defining
the velocity field. Since the velocity field is geodesic and is aligned with a Killing vector field of
unit norm, it describes a unique local frame where all forces (like those induced by a temperature
gradient) vanish.
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corrections in (13.36) must be absent. It is easy to check that this is indeed the case
for the first corrections, which in the 2 C 1-dimensional case under consideration
read:

T
��

.1/ D �2���� � �H�
	.�u�

�/

	 : (13.44)

The first term in (13.44) involves the shear viscosity �, which is a dissipative
transport coefficient. The second is present in systems that break parity and involves
the non-dissipative rotational-Hall-viscosity coefficient �H. Notice that the bulk-
viscosity term ����� or the anomalous term Q�����˛ˇ
u˛rˇu
 cannot appear in
a conformal fluid because they are tracefull, namely for conformal fluids � D
Q� D 0. Since the fluid congruence is shearless, the first corrections (13.44)
vanish. Demanding that higher-order corrections also vanish, on the one hand, sets
constraints on the transport coefficients coupled to the dangerous tensors that can be
constructed with the vorticity only; on the other hand, it leaves free many other
coefficients, which couple to tensors vanishing because of the actual kinematic
state of the fluid. If the transport coefficients coupled to the dangerous tensors
are non-zero, the geodesic fluid congruence with constant temperature is not a
solution of the full Euler equations (13.35). The resolution of the latter alters
the above perfect equilibrium state, leading in general to u D � C ıu.x/ and
T D T0 C ıT .x/. Such an excursion will be stationary or not depending on
whether the non-vanishing corrections to the perfect energy–momentum tensor are
non-dissipative or dissipative.

13.4.2 Perfect-Cotton Geometries and Their Bulk Ascendants

The Strategy The analysis presented in Sect. 13.4.1 is useful if there exist con-
formal fluids, which are indeed in perfect equilibrium on a Papapetrou–Randers
background. This is not guaranteed a priori since it requires infinite classes of
transport coefficients to vanish. Holography provides the appropriate tools for
addressing this problem. The strategy has already been described above, and the
remaining two steps are the following:

1. Impose condition (13.34) with perfect energy–momentum tensor and hence
restrict the Papapetrou–Randers geometries to those which have a Cotton–York
tensor of the perfect-fluid form (13.43):

C�� D c

2
.3u�u� C g��/ ; (13.45)
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where c is a constant with the dimension of an energy density.20 This form is
known in the literature as Petrov class Dt.21 Notice that the existence of perfect
geometries is an issue unrelated to holography.

2. Sum the Fefferman–Graham series expansion. It turns out that the bulk geome-
tries obtained in this way are exact solutions of Einstein’s equations: perfect-
Cotton geometries are boundaries of 3 C 1-dimensional exact Einstein spaces,
and the resulting boundary energy–momentum tensor is also of the perfect-fluid
form. This shows that the assumption of perfect equilibrium is well motivated,
and the “self-duality” condition (13.34) does indeed ensure integrability.

Classification of the Perfect Papapetrou–Randers Geometries Consider a met-
ric of the form (13.39) with B.x/ D 1. Requiring its Cotton–York tensor (13.69) to
be of the form (13.45) is equivalent to impose the conditions:

Or2q C q.ı � q2/ D 2c ; (13.46)

aij

� Or2q C q

2
.ı � q2/ � c

�
D Ori Orj q ; (13.47)

ORC 3q2 D ı (13.48)

with ı being a constant relating the curvature of the two-dimensional base space, OR,
with the vorticity strength q (see App. 2 for definitions and formulas).

It is remarkable that perfect-Cotton geometries always possess an extra
space-like Killing vector. To prove22 this we rewrite (13.46) and (13.47) as

�
Ori Orj � 1

2
aij Or2

�
q D 0 : (13.49)

Any two-dimensional metric can be locally written as

d`2 D 2e2˝.z;Nz/dz dNz ; (13.50)

where z and Nz are complex-conjugate coordinates. Plugging (13.50) in (13.49)
we find that the non-diagonal equations are always satisfied (tracelessness of the
Cotton–York tensor), while the diagonal ones read:

@2zq D 2@z˝@zq ; @2Nzq D 2@Nz˝@Nzq :

20We recall that " has dimensions of energy density or equivalently .length/�3, therefore the
energy–momentum tensor and the Cotton–York tensor have the same natural dimensions.
21The subscript t stands for time-like and refers to the nature of the vector u. For an exhaustive
review on Petrov & Segre classification of three-dimensional geometries see [59] (useful references
are also [60–62]).
22I thank Jakob Gath for clarifying this point.
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The latter can be integrated to obtain

@zq D e2˝�2 NC.Nz/ ; @Nzq D e2˝�2C.z/ (13.51)

with C.z/ an arbitrary holomorphic function and NC.Nz/ its complex conjugate.
Trading these functions for

w.z/ D
Z

e2C.z/dz ; Nw.Nz/ D
Z

e2 NC.Nz/dNz ;

and introducing new coordinates .X; Y / as

X D w.z/C Nw.Nz/ ; Y D i . Nw.Nz/ � w.z// ;

we find using (13.51) that the vorticity strength depends only on X : q D q.X/.
Hence, (13.50) reads:

d`2 D 1

2
@Xq

�
dX2 C dY 2

�
:

This condition enforces the existence of an extra Killing vector. Finally we note that
(13.48) can be obtained by differentiating (13.46) with respect to X .

The presence of the space-like isometry actually simplifies the perfect-Cotton
conditions for Papapetrou–Randers metrics. Without loss of generality, we take the
space-like Killing vector to be @y and write the metric as

ds2 D � .dt � b.x/ dy/2 C dx2

G.x/
CG.x/dy2 : (13.52)

Thus

q D �@xb ;

and (13.46)–(13.48) can be solved in full generality. The solution is written in terms
of 6 arbitrary parameters ci :

b.x/ D c0 C c1x C c2x2 ; (13.53)

G.x/ D c5 C c4x C c3x2 C c2x3 .2c1 C c2x/ : (13.54)

It follows that the vorticity strength takes the linear form

q.x/ D �c1 � 2c2x ; (13.55)
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and the constants c and ı are given by:

c D �c31 C c1c3 � c2c4 ; (13.56)

ı D 3c21 � 2c3 : (13.57)

Finally, the Ricci scalar of the two-dimensional base space is given by

OR D �2 .c3 C 6c2x.c1 C c2x// ;

and using (13.67) one can easily find the form of the three-dimensional scalar
curvature as well. Not all the six parameters ci correspond to physical quantities:
some of them can be just reabsorbed in a change of coordinates. In particular, we
set here c0 D 0 by performing the diffeomorphism t ! t C p y, with constant p,
which does not change the form of the metric.

The Bulk Duals of the Perfect Geometries At this stage, the reader may wonder
what the interpretation of the parameters ci is. It is more convenient to answer that
question after unravelling the Einstein metrics that fit the boundary data (13.43), and
(13.52) (with (13.53) and (13.54)). As already advertised, with these boundary data,
the Fefferman–Graham series is resummable because (13.43) and (13.45) satisfy the
“self-duality” condition (13.34) with w D �c=". The resulting exact Einstein space
reads, in Eddington–Finkelstein coordinates (where grr D 0 and gr� D �u�):

ds2 D �2u

�
dr � 1

2k2
G.x/@xq dy

�
C 2k2d`2

�
�
r2k2 C ı

2k2
� q2

4k2
� 1

2

�
2Mr C qc

2k6

��
u2 (13.58)

with

u D �dt C b dy ; (13.59)

2 D r2 C q2

4k4
: (13.60)

The various quantities appearing in (13.58)–(13.60), b.x/, G.x/, q.x/, c and ı, are
reported in Eqs. (13.53)–(13.57). Notice also that a coordinate transformation is
needed in order to recast (13.58) in Boyer–Lindqvist coordinates, and a further one
to move to the canonical Fefferman–Graham frame (13.23). Details can be found
in [23], which we will not present here because they lie beyond the main scope of
these lectures. Even though r is not the Fefferman–Graham radial coordinate, in the
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limit r !1, they both coincide. It is easy then to see that the boundary geometry
is indeed the stationary Papapetrou–Randers metric (13.42), (13.52), and that the
boundary energy–momentum tensor is of the perfect-fluid form with

" D Mk2

4�GN
:

Upon performing coordinate transformations and parameter redefinitions, one
can show that for c4 ¤ 0, the bulk metrics at hand belong to the general class
of Plebañski–Demiaǹski type D, analyzed in [63]. For vanishing c4, depending on
the other parameters, one finds the flat-horizon solution of [64], or the rotating
topological black hole of [65], or a set of metrics, which were found (but still not
fully studied) in [23]. All these solutions are AdS black holes, which have mass
M , nut charge n and angular velocity a. The acceleration parameter, present in
Plebañski–Demiaǹski [63] is missing here. Actually, this parameter is an obstruction
to perfect-Cotton boundary (i.e. to Dt Petrov–Segre class), and this is why it does
not appear in our classification (see also [66]).

For all these metrics, the horizon is spherical, flat or hyperbolic.23 The isometry
group contains at least the time-like Killing vector @t and the space-like Killing
vector @y . In the absence of rotation, two extra Killing fields appear, which together
with @y generate SU.2/, Heisenberg or SL.2;R/. The bulk metric is then a foliation
over Bianchi IX, II or VIII homogeneous geometries.

From the explicit form of the bulk space–time metric (13.58), we observe that it
can have a curvature singularity when 2 D 0. The locus of this singularity will then
be at

r D 0; q.x/ D 0 :

It also has an ergosphere, where the Killing vector @t becomes null,24 at r.x/
solution of

r2k2 C ı

2k2
� q2

4k2
� 1

2

�
2MrC qc

2k6

�
D 0 :

We will not pursue any further this discussion on the bulk geometries. A thorough
analysis of horizons, singularities or closed time-like curves can be found in the
already quoted literature. A last comment concerning these black holes should
however be made in relation with their symmetries: they are stationary and possess

23This is a local property. In the flat or hyperbolic cases, a quotient by a discrete subgroup of the
isometry group is possible and allows to reshape the global structure, making the horizon compact
without conical singularities (a two-torus for example).
24The Killing vector @t is time-like and normalized at the boundary, where it coincides with the
velocity field of the fluid, but its norm gets altered along the holographic coordinate, towards the
horizon.
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at least an additional spatial isometry. This is a consequence of the perfect-Cotton
structure of their boundary, and this is consistent with the rigidity theorem in 3C 1
dimensions, which requires all stationary black hole solutions in flat space–time to
have an axial symmetry. However, as far as we are aware, it is not known if this
theorem is valid for 3C 1-dimensional asymptotically AdS stationary black holes.
The above analysis appears thus as an indirect and somehow unexpected hint in
favor of the rigidity theorem beyond asymptotically flat space–times.

Let us end this paragraph with an example, which generalizes (in Lorentzian
signature) the case (13.18) presented in Sect. 13.2.3: the AdS Kerr–Taub–NUT with
spherical horizon. In Boyer–Lindqvist coordinates this reads:

ds2 D 2

�r

dr2� �r

2
.dt C ˇd'/2C 2

�#

d#2C sin2 #�#

2
.adt C ˛d'/2 (13.61)

with

2 D r2 C .n � a cos#/2 ;

�r D k2r4 C r2.1C k2a2 C 6k2n2/ � 2Mr C .a2 � n2/.1C 3k2n2/ ;
�# D 1C k2a cos#.4n � a cos#/

and

ˇ D �2.a � 2nC a cos#/

&
sin2 #=2 ;

˛ D �r
2 C .n � a/2

&
;

& D 1 � k2a2 :

Back to the Boundaries and Transport Properties The boundary physics
depends on the subset of those parameters among the ci s, which are non-trivial.
The boundary metric is in general a function of two parameters, n and a, whereas
M appears in the boundary energy–momentum tensor. The bulk isometry group
is conserved. Thus, in the absence of rotation parameter a D 0, the boundary is a
homogeneous and stationary space–time: squashed S3 (including e.g. Gödel space),
squashed Heisenberg or squashed AdS3. The fluid undergoes a homogeneous
rotation (i.e. without center, monopolar ) with constant vorticity strength q.

For non-vanishing a, the boundary space–time is stationary but has only spatial
axial symmetry. The vorticity is a superposition of a monopole and a dipole , and
the fluid has now a cyclonic rotation around the poles on top of the uncentered one.

We give for illustration the boundary metric of the Kerr–Taub–NUT space–time
with spherical horizon (13.61):

ds2bry. D � .dt C ˇd'/2 C 1

k2�#

�
d#2 C �2

#

&2
sin2 # d'2

�
: (13.62)
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For vanishing a, d`2 is an ordinary two-sphere and b D �ˇd' is a Dirac-monopole-
like potential. Switching-on a deforms axially the base space d`2, while it adds a
dipole contribution to b. From the perspective of transport in holographic fluids, the
purpose is to list the dangerous tensors carried by this kind of boundaries. The more
tensors we have, the more information we gain on vanishing transport coefficients:
since the energy–momentum tensor that emerges holographically is perfect, any
transport coefficient coupled to a dangerous tensor is necessarily zero.

For the boundary metric (13.62), the vorticity strength, the Cotton prefactor and
the scalar curvature read:

q D 2k2.n � a cos#/ ;

c D 2k4n �1C k2 �4n2 � a2�� ;
R D 2k2 �1C k2n2 C 10k2na cos# C k2a2 �1 � 5 cos2 #

��
:

We observe that, on the one hand, the nut charge n is responsible for the
2 C 1-dimensional boundary not being conformally flat. The ordinary rotation
parameter a, on the other hand, introduces a #-dependence in q andR. This betrays
the breaking of homogeneity due to a: when a vanishes, the boundary is an squashed
S3 with SU.2/ � R isometry, which is a homogeneous space–time, and all of its
scalars are constants.25

Coming back to the discussion on the dangerous tensors, we expect them to be
more numerous when less symmetry is present. Indeed, for vanishing a, all scalars
are constant and both the Riemann and the Cotton are combinations of u�u� and
g�� with constant coefficients. Any covariant derivative acting on those will be
algebrised in a similar fashion. Thus

• all hydrodynamic scalars are constants,
• all hydrodynamic vectors are of the form Au� with constant A, and
• all hydrodynamic tensors are of the form Bu�u�CCg�� with constant B and C .

Hence there exists no traceless transverse tensor that can correct the hydrodynamic
energy–momentum tensor in perfect equilibrium. In other words, there is no
dangerous tensor. Therefore, in the case of monopolar geometries, the symmetry
is too rich and in such a highly symmetric kinematical configuration, the fluid
dynamics cannot be sensitive to any dissipative or non-dissipative coefficient. As
soon as a dipole component is added (a ¤ 0), a space-dependence emerges in
the various scalars and tensors, and infinitely many dangerous tensors appear,
which provide valuable information on the vanishing transport coefficients of the
holographic fluid.

25This family includes Gödel space–time (see [67, 68] for more information). The important issue
of closed time-like curves emerges as a consequence of the lack of global hyperbolicity. This was
discussed in [20–22], in relation with holographic fluids. When the bulk geometry has hyperbolic
horizon, this caveat can be circumvented.
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The above discussion provides a guide for the subsequent analysis. To have
access to more transport coefficients, we must perturb the geometry in a way
organized e.g. as a multipolar expansion: the higher the multipole in the geometry,
the richer the spectrum of transport coefficients that can contribute, if non-vanishing,
to the state of the fluid. No exact Einstein spaces are however available beyond
dipole configuration (Kerr).26 Thus, this programme lies outside of the present
framework, as it requires to work with perturbed bulk Einstein spaces, and handle
fluid perturbations potentially bringing the fluid away from perfect equilibrium.

13.5 Monopolar Boundaries and Topologically Massive
Gravity

Monopolar geometries have been mentioned in Sect. 13.4.2 around the example
(13.62), which appears as the boundary of Taub–NUT Schwarzschild AdS black
hole with spherical horizon. This terminology is justified by the fact that the
vorticity strength q is constant (like the strength of the magnetic field on a sphere
surrounding a Dirac monopole). Within the perfect-Cotton Papapetrou–Randers
geometries (13.52), there is a whole class of monopolar boundaries, obtained by
setting c2 D 0 in (13.55). With constant q, using the general equations (13.67)
and (13.68) for Papapetrou–Randers, as well as (13.45)–(13.48) for perfect-Cotton
geometries, we find:

R D ı � 5q
2

2
;

R�� dx�dx� D ı � q2
2

u2 C
�
ı

2
� q2

�
ds2 ;

C�� dx�dx� D q

4

�
ı � q2� �3u2 C ds2

�
:

These expressions can be combined into

R�� � R
2
g�� C 	g�� D 1

�
C�� (13.63)

with

	 D ı

6
� 5q

2

12
; � D 3q

2
:

26In 1919, Weyl exhibited multipolar Ricci-flat solutions, which do not seem extendible to the
Einstein case (see [69] for details).
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Expression (13.63) shows that monopolar geometries solve the topologically
massive gravity equations [24] for appropriate constants 	 and �. This is not
surprising, as it is a known fact that, for example, squashed anti-de-Sitter or
squashed three-spheres solve topologically massive gravity equations [59–62].
However, what is worth stressing here is that reversing the argument and requiring a
generic Papapetrou–Randers background (13.39) to solve (13.63) leads necessarily
to a monopolar geometry. We leave as an exercise to set that result.27

As already advertised, the topological mass term (resulting from the
Chern–Simons action in (13.3)) appears explicitly, in the cases under consideration,
as part of topologically massive gravity equations. The reader might be puzzled by
this connection. The 2C 1-dimensional geometries analyzed here are not supposed
to carry any gravity degree of freedom since they are ultimately designed to serve
as holographic boundaries. Hence, the emergence of topologically massive gravity
should not a priori be considered as a sign of dynamics. Nevertheless, as for the
general “self-dual” case (Eqs. (13.34) obtained by varying (13.3)), we should leave
open the option of introducing some topologically massive graviton dynamics on
the boundary. This approach should not be confused with that of some recent
works [70, 71], where topologically massive gravity and its homogeneous solutions
play the role of bulk geometries. Investigating the interplay between these two
viewpoints might be of some relevance.

13.6 Outlook

Modified versions of Einstein’s gravity are of interest primarily in cosmology.
The aim of the present lectures is to set a bridge with a somewhat less expected
area of applications, namely holography. Prior to holography we actually find,
in four-dimensional Euclidean framework, quaternionic spaces. These, from the
Fefferman–Graham viewpoint, require a boundary condition, which is obtained
holographically as the extremization of

S D Sholographic matter C SChern–Simons : (13.64)

Assuming homogeneity for the boundary metric, further restricts (13.64) to the
topologically massive gravity action, as shown in the last paragraph of these notes.
Although, at this stage, only the extremum of this action is relevant, investigating

27Use the expression for the Ricci tensor for Papapetrou–Randers geometries (13.68), impose
tracelessness and extract 	. Then use (13.69) and (13.54) and conclude that q must be constant
and related to �. Combine these results and reach the conclusion that all solutions are fibrations
over a two-dimensional space with metric d`2 of constant curvature OR D 6	� 2�2=9. They are thus
homogeneous spaces of either positive (S2), null (R2) or negative curvature (H2).
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boundary graviton dynamics in holographic set-ups might prove interesting in the
future.

Translating the bulk Weyl self-duality condition into boundary data opens up
the possibility to make it applicable for Lorentzian-signature bulk and boundary
geometries. This sort of integrability requirement is not necessary, however, and
many Einstein spaces exist, which do not satisfy (13.34).28 Investigating further the
relationships amongst the boundary energy–momentum tensor and the boundary
Cotton tensor may be instructive in the case of exact Einstein spaces, which fall
outside of the class studied here.29 This could be useful both for understanding the
underlying gravitational structure and for studying transport properties in conformal
holographic fluids.

Besides potential generalizations of (13.34), appears also here the issue of the
form of the boundary metric and of the energy–momentum tensor. Our analysis
has been limited to (i) stationary Papapetrou–Randers boundary geometries (13.39)
with B D 1, and (ii) perfect-fluid-like boundary energy–momentum tensors. These
options make operational the determination of vanishing transport coefficients
by imposing perfect equilibrium, which turns out to exist holographically. We
may however scan more general situations as many more exact Einstein spaces
exist that deserve to be analyzed. We have already quoted in Sect. 13.4.2 the
Plebañski–Demiaǹski Einstein stationary solutions [63], for which the acceleration
parameter is a source of deviation from the perfect-Cotton boundary geometry. Non-
stationary spaces provide equally interesting laboratories for further investigation
(see footnote 29). Finally, on the Euclidean side, a great deal of techniques
(isomonodromic deformations, twistors, . . . ) have been developed for finding the
families of quaternionic spaces quoted in [9, 10, 13, 15, 16, 18, 29] (see also [73]
for a review). Among these, the Calderbank–Pedersen two-Killing family [19] is
particularly interesting, because it includes the Euclidean Weyl-self-dual version30

of the Kerr–Taub–NUT (13.61). Since this family contains more self-dual metrics
than our exhaustive analysis of Sect. 13.4.2 has revealed, these metrics must
necessarily lead to a non-perfect boundary energy–momentum tensor, potentially
combined with a Papapetrou–Randers boundary geometry with non-constant B .
Although this discussion is valid in the Euclidean and not all Euclidean solutions
admit a real-time continuation, it should help clarifying the landscape of self-duality
holographic properties, and possibly be useful for Lorentzian extensions.

Last, but very intriguing, comes the limitation in the dimension. We have been
analyzing four dimensional bulk geometries because our guideline was self-duality,
which indeed exists in this (Euclidean) framework. It can however be generalized
in eight-dimensional spaces. There, it is known that the octonionic symbols �ABCD

allow to define a duality map: QRAB D �ABCDRCD. Reducing the Riemann two-form

28As usual with instantons, self-duality selects ground states, but exact excited states can also exist.
29Recently this was discussed for a non-stationary solution of Einstein’s equations [72].
30In this case, (13.21) is traded for M D n

�
1� k2

�
4n2 � a2

��
(see also [74]).
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RAB, which belongs to the 28 of SO.8/, with respect to Spin7 � SO.8/ leads to
a self-dual component S21 and an anti-self-dual one A7. Equations (13.11) and
(13.12) are now traded for

S21 D W 168�21 C s�21 CW 105�7 ;

A7 D W 27�7 C s�7 C S35�21 ;

where the singlet s is the scalar curvature, S35 is the traceless Ricci, and the
W I are the three irreducible components of the Weyl tensor. Riemann self-dual
gravitational instantons, obtained by setting A7 D 0, are known to exist [75–
79]. Those are Ricci flat. The question is still open to find Weyl self-dual Einstein
spaces, by demanding S35 D 0 and W 27 D 0. From the boundary perspective,
W 27 D 0 could be interpreted as the extremization requirement for (13.64) with
respect to the seven-dimensional boundary metric, the Chern–Simons being now
the seven-dimensional one [80].
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Appendix 1: On Vector-Field Congruences

We consider a manifold endowed with a space–time metric of the generic form

ds2 D g��dx�dx� D ���E�E�

(to avoid inflation of indices we do not distinguish between flat and curved ones).
Consider now an arbitrary time-like vector field u, normalised as u�u� D �1, later
identified with the fluid velocity. Its integral curves define a congruence which is
characterised by its acceleration, shear, expansion and vorticity (see e.g. [81, 82]):

r�u� D �u�a� C 1

D � 1���� C ��� C !��
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with31

a� D u�r�u�; � D r�u� ;

��� D 1

2
� 
� �

�
�

�ru� Cr�u
� � 1

D � 1����
�ru�

D r.�u�/ C a.�u�/ � 1

D � 1���ru ;

!�� D 1

2
� 
� �

�
�

�ru� � r�u
� D rŒ�u�� C uŒ�a�� :

The latter allows to define the vorticity form as

2! D !�� dx� ^ dx� D duC u ^ a : (13.65)

The time-like vector field u has been used to decompose any tensor field on
the manifold in transverse and longitudinal components. The decomposition is
performed by introducing the longitudinal and transverse projectors:

U�
� D �u�u�; ��

� D u�u� C ı�� ; (13.66)

where��� is also the induced metric on the surface orthogonal to u. The projectors
satisfy the usual identities:

U�
U


� D U�

�; U �
�


� D 0; ��

�

� D ��

�; U �
� D 1; ��

� D D � 1 ;

and similarly:

u�a� D 0; u���� D 0; u�!�� D 0; u�r�u� D 0; �
�r�u D r�u� :

Appendix 2: Papapetrou–Randers Backgrounds and Aligned
Fluids

In this appendix, we collect a number of useful expressions for stationary
Papapetrou–Randers three-dimensional geometries (13.39) with B D 1, and for
fluids in perfect equilibrium on these backgrounds. The latter follow geodesic
congruences, aligned with the normalized Killing vector @t , with velocity one-form
given in (13.41).

31Our conventions are: A.��/ D 1=2
�
A�� CA��

�
and AŒ��� D 1=2

�
A�� � A��

�
.
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We introduce the inverse two-dimensional metric aij, and bi such that

aijajk D ıik ; bi D aijbj :

The three-dimensional metric components read:

g00 D �1 ; g0i D bi ; gij D aij � bibj ;

and those of the inverse metric:

g00 D aijbibj � 1 ; g0i D bi ; gij D aij :

Finally,

p
jgj D pa ;

where a is the determinant of the symmetric matrix with entries aij.
Using (13.41) and (13.65) we find that the vorticity of the aligned fluid can be

written as the following two-form (the acceleration term is absent here)

! D 1

2
!��dx� ^ dx� D 1

2
db :

The Hodge-dual of !�� is

 � D ���!� , !� D �1
2
��� 

� :

In 2C 1 dimensions it is aligned with the velocity field:

 � D qu� ;

where, in our set-up,

q.x/ D ��
ij@ibjp
a

:

It is a static scalar field that we call the vorticity strength, carrying dimensions of
inverse length. Together with OR.x/—the curvature of the two-dimensional metric
d`2 introduced in (13.42), the above scalar carries all relevant information for the
curvature of the Papapetrou–Randers geometry. We quote for latter use the three-
dimensional curvature scalar:

R D ORC q2

2
; (13.67)
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the three-dimensional Ricci tensor

R�� dx�dx� D q2

2
u2 C

ORC q2
2

d`2 � u dxu����r�q ; (13.68)

as well as the three-dimensional Cotton–York tensor:

C�� dx�dx� D 1

2

� Or2q C q

2
. ORC 2q2/

� �
2u2 C d`2

�

�1
2

� Ori Orj q dxidxj C Or2q u2
�

�u

2
dxu����r�. ORC 3q2/ : (13.69)
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Chapter 14
Beyond Supergravity in AdS-CFT:
An Application to Jet Quenching

Diana Vaman

Abstract These notes are dedicated to the study of jet quenching in the strongly
coupled limit using gauge/string duality. We are interested in corrections to the
infinite coupling 	D1 result for the jet stopping, in powers of 	�1=2. To estimate
these corrections we need to go beyond supergravity in AdS-CFT, and include
all higher-derivative corrections to the supergravity action which arise from the
string ˛0 expansion. For the particular type of “jets” that we study, the expansion
in 	�1=2 is well behaved for jets whose stopping distance `stop is in the range
	�1=6`max � `stop . `max, but the expansion breaks down for jets created in such a
way that `stop � 	�1=6`max. The reason for the breakdown of the 	�1=2 expansion
is caused by the excitation of massive string states. In particular, consider “jets”
which are dual to high-momentum gravitons. In the black brane background the
gravitons, which are closed string states, get stretched into relatively large classical
strings by tidal forces. These stringy excitations of the graviton are not contained in
the supergravity approximation, but the jet stopping problem can nonetheless still be
solved by drawing on various string-theory methods (the eikonal approximation, the
Penrose limit, string quantization in pp-wave backgrounds) to obtain a probability
distribution for the late-time classical string loops.

14.1 A Brief Introduction and Overview

Inspired by the observation of (and rapidly growing body of experimental informa-
tion on) jet quenching in relativistic heavy ion collisions, there has for many years
been an interest in the theory of jet quenching and what can be learned about that
theory by studying interesting limiting cases. One of the simplest-to-pose thought
experiments is this: How far does a very-high momentum excitation (the potential
precursor of a would-be jet) travel in a thermal QCD medium before it loses energy,
stops, and thermalizes in the medium? And how does the answer to that question
depend on the effective strength ˛s of the strong coupling?
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This question can be addressed from first principles in various theoretical limits.
One such limit is that of weak coupling, which in principle applies to asymptotically
large temperatures T and jet energiesE , for which the relevant running values of ˛s

are small. In that limit, the stopping distance `stop for a high-energy parton (E � T )
scales with energy as E1=2, up to logarithms [1]. A contrasting limit of interest
occurs when the running values of ˛s relevant to jet stopping are all large.1 This
problem is not very tractable from first principles in QCD itself, but, through gauge-
gravity duality, progress can be made for QCD-like plasmas with gravity duals, such
as N D4 super Yang Mills (SYM) theory. For some years, people have considered
various ways to study analogs of jet stopping in such plasmas, namely the stopping
distance for various types of localized, high-momentum excitations. The exact
stopping distance depends on details of exactly how the “jet” is prepared, but
universally these studies have found that the maximum possible stopping distance
`max scales with energy as E1=3, in contrast to the weak-coupling scaling of E1=2.
[3–8]2 have used gauge-gravity duality to study this problem in the strong coupling
limit 	 � Ncg

2
YM ! 1 of large-Nc, N D4 supersymmetric Yang-Mills (SYM)

and related QCD-like plasmas. This is an interesting theoretical result because it
teaches us that the scaling of jet stopping with energy depends on the strength of the
coupling. It remains an open question (which we will not answer here) how E1=3

starts to move toward E1=2 as one lowers the coupling, and vice versa.
The stopping distance of high-momentum, localized excitations travelling

through the plasma depends on more than just the energy of the excitation.
Depending on exactly how one creates the excitation (the “jet”), one may get
stopping distances `stop significantly smaller than the maximum `max. As an example
from weak coupling, imagine that we spread out the total energy and momentum
E of the jet among 10 partons, each having energy E=10, rather than putting it all
into a single parton of energy E . Each of the 10 partons has lower energy than the
single one and so will stop sooner; so the stopping distance for the high-momentum
excitation depends on how many high-energy partons we use in the initial state.
In the weak-coupling case, the maximum stopping distance `max corresponds to
the particular initial state where all the energy is concentrated into a single initial
parton.

1In a weak-coupling analysis, the two running couplings relevant to jet stopping are, roughly,
˛s.T / and ˛s.Q?/, where Q? � . OqE/1=4 grows slowly with energy and is the scale of the
typical relative momentum between two daughter partons when a high energy parton splits through
hard bremsstrahlung or pair production. ( Oq � ˛2s T

3 is a scale characteristic of the plasma that
parametrizes transverse momentum diffusion of high-energy partons.) A third limiting case of
interest, not addressed here, is where ˛s.T / is large but ˛s.Q?/ is small. See, for example, Liu,
Rajagopal, and Wiedemann [2].
2See Sin and Zahed [9] for the earliest attempt we are aware of to discuss jet stopping in the context
of gauge-gravity duality. See also [10]. In our work, we will only consider analogs of light-particle
jets and will not study the heavy-particle case. For 	D1 analysis of the latter, see, for example,
[11, 12] and references therein.
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In the strong-coupling case, we cannot speak of individual partons, but the
stopping distance again depends on how we prepare the initial high-momentum
excitation. In our work [6, 7, 13], we create the initial excitation in a way that
is analogous to what you would get if a high-momentum, slightly virtual photon
(or graviton or other massless particle) decayed hadronically in the quark-gluon
plasma, as depicted in Fig. 14.1. Alternatively, one could consider the decay of a
high-momentum on-shell W boson (also depicted). For these methods of creating
“jets,” one finds that the maximum possible stopping distance scales as

`max � E1=3

T 4=3
: (14.1)

As we will review later, it turns out that the stopping distance may be made smaller
than (14.1) by varying the virtuality �q2 � �q�q� of the virtual photon (or
equivalently the mass-squared M2

w of the on-shell W boson) [4, 7]. The important
point is that there is a range of stopping distances `stop . `max for our “jets,”
depending on the details of how those excitations are created.

Most top-down studies of jet stopping using gauge-gravity duality have studied
the infinite color and infinite coupling limit, NcD1 and 	D1, where 	 � Ncg

2
YM

is the ’t Hooft coupling. To understand the true high-energy behavior, however, it is
important to study the corrections to these limits. As an example, Fig. 14.2 shows
two different scenarios one might imagine for the maximum stopping distance `max

for strongly-coupled N D4 SYM.

W
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E
+q

E q
γ * graviton*

E g
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a b c

Fig. 14.1 Examples of the decay of a very high-energy (a) slightly virtual photon, (b) slightly
virtual graviton, or (c) on-shell WC boson, inside a standard-model quark-gluon plasma, produc-
ing high-momentum partons moving to the right. In the context of N D4 super Yang Mills, the q,
u, and Nd above represent adjoint-color fermions or scalars carrying R charge. For strong coupling,
of course, one should not picture perturbatively, as in this figure, the high-momentum excitation
created in the plasma by the decay
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Fig. 14.2 Examples of two different scenarios for the high-energy (E � T ) behavior of the
maximum jet stopping distance `max.E/ which are indistinguishable with 	D1 calculations
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One is that `max grows like E1=3 at high energy, up to arbitrarily high energies.
The other is that it starts growing like E1=3 at high energyE � T , but then crosses
over to some different power-law behavior once E exceeds some positive power of
	 times T (e.g. 	2T in the figure). In the latter case, E1=3 would not be the true
behavior for arbitrarily large E and large but finite 	. But there is no way to tell the
difference between these two scenarios if one only has 	D1 calculations!

For this reason, we must analyze the parametric size of finite-	 corrections
to jet stopping distances. Consequently, in the AdS/CFT we must go beyond the
supergravity limit, and use the full fledged type IIB string theory dual.

Here we address the question of what happens when 	 is large but not infinite,
while keeping NcD1.3 In the holographic dual, this will require considering the
effect of string corrections to the supergravity action. These corrections correspond
to higher-derivative terms in the supergravity action, such as the 4th power of the
Riemann curvature. Formally, the effects of higher and higher derivative corrections
to the supergravity action are suppressed by more and more factors of 1=

p
	, but

these suppressions might be compensated by large factors ofE=T in the jet stopping
problem. For this reason we will find that finite 	 effects are sizable, as opposed to
other results discussed in the literature where finite 	 corrections are subleading and
yield small corrections.

For the particular type of “jet” excitations that we study, Fig. 14.3 summarizes
our findings. This figure depicts the parametric importance of corrections as a
function of the 	D1 result `stop for the stopping length of the jet. The straight
lines on this log-log plot represent simple power-law dependencies on the stopping
distance. The first correction to the ten-dimensional low-energy supergravity action
for the gravity dual to N D4 super-Yang-Mills is of the form R4 [15] (plus
other terms related by supersymmetry), where R4 is short-hand for a particular
combination of contractions of four powers of the Riemann tensor. We’ve labeled
each curve in Fig. 14.3 with a few examples of the type of higher-derivative
correction that contributes to each. The precise meaning of the importance of an
operator, denoted by the vertical axis, will be explained in Sect. 14.2.3. It is not
quite the same thing as the relative change in stopping distance due to that operator,
but, when the “importance” is small, the effect on the stopping distance will also be
small. Finally, we stress that Fig. 14.3 assumes the high-energy limit E � 	1=2T .
If E � 	1=2T (which is equivalent to 	�1=6`max � 1=T ), then the corrections
to 	D1 jet stopping results remain small from `stop � `max all the way down to
`stop � 1=T , which is the smallest jet stopping distance that we will consider.4

3For a discussion of one potential source of 1=Nc corrections to jet propagation, see Shuryak, Yee,
and Zahed [14].
4At a technical level, we define where the jet stops [6, 7] following Chesler et al. [5, 16] as the
location where the jet’s energy and momentum and charge first begin to evolve hydrodynamically.
Since hydrodynamics is an effective theory only on distance scales � 1=T at strong coupling, it
does not make sense to apply this definition to stopping distances small compared to 1=T .
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higher dim. oprs.

higher dim. oprs.
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−q2/T 2
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Fig. 14.3 A parametric picture of the relative importance of higher-derivative corrections to the
low-energy supergravity action as a function of the stopping distance `stop (using the 	D1 result
for `stop). The axis are both logarithmic, and an importance of 1 indicates that the individual
correction would, by itself, significantly modify the 	D1 analysis. Our measure of “importance”
is explained in Sect. 14.2.3. Also shown, as an alternative horizontal axis, is the four-dimensional
virtuality �q2 of the source that created the jet, where OE � E=T

We emphasize that finding the parametric dependence of corrections shown
in Fig. 14.3 does not depend on knowing details of the precise form of higher-
derivative corrections to the supergravity action, nor on details of their precise
effects on the AdS5-Schwarzschild background. Such details are not known for
corrections involving high powers of curvature. And though we have taken care in
Fig. 14.3 to only depict higher-derivative corrections that actually appear as string
corrections to Type IIB supergravity,5 which is the case relevant to N D4 SYM, our
qualitative results do not depend on these details either.

In fact, given the types of “jets” that we study, the maximum stopping distance
scale `max given by (14.1) will only be defined parametrically. It is the distance
scale beyond which the amount of charge that a highly-penetrating jet deposits in
the medium, on average, begins to fall exponentially. One may define a related scale
`tail by characterizing this exponential fall-off as

deposition.x3/ � prefactor� e�x3=`tail for x3 � `max (14.2)

5For a nice summary of higher-dimensional gravitational corrections in Type II supergravity
generated by tree-level string amplitudes (i.e. in the NcD1 limit), see Table 1 of Stieberger
[17]. Though not relevant to the NcD1 case we are discussing, a nice discussion of corrections
generated from one-loop string amplitudes may be found in Richards [18].
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for a jet moving in the x3 direction. Figure 14.3 indicates that the expansion in
higher-derivative corrections should be well-behaved around `max, and correspond-
ingly the corrections to `tail should be well-behaved. We explicitly computed the
leading, R4 correction to `tail in [13]. The precise result depends on details of the
type of source used to initially create the jets. As an example, here is the result
corresponding to creating a jet in the N D4 SYM plasma via the decay of a high
momentum, slightly off-shell graviton:

`tail D `	D1
tail

�
1C 47:162 	�3=2 CO.	�5=2/

	
: (14.3)

This result for `tail increases with decreasing 	.
The conclusion which follows from Fig. 14.3 is that the formal expansion in

1=
p
	 (which corresponds to an expansion in the string parameter ˛0 on the gravity

side) breaks down for some jets and is safe for others, depending on the stopping
distance `stop of the jet (and therefore on the virtuality �q2). The corrections to the
	D1 result are parametrically small for 	�1=6`max � `stop . `max. In particular,
corrections to the maximum stopping distance `max / E1=3 are small. But the
interesting case is when jets are created in such a way that

T �1 � `stop . 	�1=6`max; (14.4a)

which is

T �1 � `stop .
�
E=
p
	
�1=3

T 4=3
: (14.4b)

For `stop � 	�1=6`max, all the corrections are the same size, and so the formal
expansion in powers of 1=

p
	 has broken down. Yet the individual corrections are

all small (of relative importance 	�1=2) for that `stop. From Fig. 14.3, we cannot tell
whether the sum of the corrections to 	D1 will remain small for `stop . 	�1=6`max

or whether, instead, the 	D1 calculation becomes useless there.
Perhaps the relative size of the total correction to the 	D1 result flattens out, as

depicted in Fig. 14.4a. Perhaps the corrections sum to give rapid (e.g. exponential)
growth, as in Fig. 14.4b. Perhaps they sum to give rapid suppression, as in Fig. 14.4c.
Figuring out what happens for `stop � 	�1=6`max involves a full string-theory
analysis of the problem.

Before continuing it is useful to first explain one other qualitative feature of the
	D1 calculation. Excitations created in the field theory correspond to excitations
created on the boundary of AdS5-Schwarzschild, which then fall towards the black
brane over time, such as depicted in Fig. 14.5. The 3-space distance that this
excitation travels before falling into the horizon matches the stopping distance of



14 Beyond Supergravity in AdS-CFT: An Application to Jet Quenching 375

stop
λ−1/6

max max

λ−3/2

λ−1/2
1

a

stop
λ−1/6

max max

λ−3/2

λ−1/2
1

b

stop
λ−1/6

max max

λ−3/2

λ−1/2
1

c

Fig. 14.4 Like Fig. 14.3 but showing some different behaviors that the total correction (summing
all higher-derivative corrections) might conceivably have

the corresponding excitation in N D4 SYM.6 For `stop � `max, which includes
the region (14.4) of interest, there is a nice simplification. On the gravity side, the
excitation falling in Fig. 14.5 turns out to be a spatially small wavepacket which can
be treated in the geometric optics approximation. The wavepacket’s motion is the
same (up to parametrically small corrections) as that of a five-dimensional “particle”
traveling in the AdS5-Schwarzschild geometry, and so it follows a geodesic whose
trajectory is easily calculated in terms of the 4-momentum q� of the excitation. (See
Sect. 14.2.2.2 for more detail.)

In the strong-coupling limit 	D1 of the field theory, the AdS/CFT corre-
spondence reduces to one between the field theory and the infrared limit of the
string theory, which is a supergravity theory. The quanta of the supergravity fields
correspond to string states that are massless in flat ten-dimensional spacetime,
such as the graviton. For 	D1, the well-known gravitational dual of finite-
temperatureN D 4 SYM is Type IIB supergravity in an (AdS5-Schwarzschild)�S5
background.

The classical wave packet falling in Fig. 14.5 is a localized, classical excitation
of the supergravity fields. For the sake of specificity, consider the case where it is

6See [7] for a discussion in the context of the present paper, but this correspondence is implicit in
the earlier work of [3–5].
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Fig. 14.5 Qualitative sketch
of the motion though
AdS5-Schwarzschild of a
wave packet with high
3-momentum in the x3

direction. As measured by x0,
the particle takes infinitely
long to reach the horizon. Of
special importance is the
parametric scale x5

? in the
fifth dimension, where the
trajectory turns over and
beyond which progress in x3

rapidly slows to a stop

x3

x5

x5

boundary

horizon

stopping distance l stop

an excitation of the background gravitational field. A graviton is really a closed
string whose internal degrees of freedom are in their ground state. Because of the
gravitational field from the black brane, this closed string will feel tidal forces as it
falls, which will try to stretch the string in some directions and squeeze it in others.
As the graviton gets further from the boundary (and so closer to the black brane),
the tidal forces will increase, and eventually they will become large enough to excite
the internal string degrees of freedom of the graviton. It is the excitation of these
string degrees of freedom that is responsible for the breakdown of the expansion in
Fig. 14.3 in the problem region (14.4).

In the problematic case (14.4) where `stop � 	�1=6`max, the tidal forces are
strong enough to stretch that loop of string to become classically large before the
stopping distance is reached. This is why stringy corrections cannot be ignored
in that case, explaining the breakdown of the expansion in Fig. 14.3. (In contrast,
the tidal forces are not strong enough to excite the graviton’s internal degrees of
freedom soon enough when `stop � 	�1=6`max.) Though the resulting classical
string loop will be large compared to the size of a graviton, we must ask how its size
compares to the stopping distance `stop. We find that the ratio of (i) the stretched,
classical string’s size in the direction of motion x3 to (ii) the stopping distance `stop

is parametrically of order

.ıx3/string

`stop
� 	�1=4 ln1=2

�
	�1=6`max

`stop

�
: (14.5)

Because of the 	�1=4, this ratio is typically parametrically small for large but finite 	,
and we argue that the stretching of the graviton into a string (and the accompanying
breakdown of the formal expansion in 1=

p
	 in Fig. 14.3) then has sub-leading

impact on 	D1 results for the stopping distance. But (14.5) also includes cases
where the stretching of the string may play an important role: If one considers a
situation where the argument of the logarithm in (14.5) is exponentially large, then
the logarithm can be large enough to compensate for the factor of 	�1=4.
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Fig. 14.6 The (pink) shaded area represents a narrow region of space-time around the null
geodesic of Fig. 14.5. The AdS5-Schwarzschild metric in this region may be approximated as a
pp-wave background for the purpose of quantizing a small, falling loop of string that describes a
graviton (or other particle) in the initial falling wavepacket

Since the tidal forces stretch a quantum string (the graviton) into a larger classical
string, one may wonder whether or not it is possible to do a real, detailed calculation
of the transition between the two. In general, it is not known how to quantize a string
in an AdS5-Schwarzschild background. But remember that our graviton is localized
and so only probes a region of space-time near the geodesic depicted in Fig. 14.5.
It is enough to consider only a narrow region of the space-time that lies near a null
geodesic, as depicted in Fig. 14.6, and so we may treat the full background metric
in an approximation (known as a Penrose limit) that treats displacements from the
null geodesic as small. The resulting approximation to the background metric is
an example of what is known as a pp-wave background, and it is known how to
quantize a string in a pp-wave background. In particular, it is possible to calculate
the probability distribution of the shape of the classical string loop. The methods we
use are similar to previous works by other authors on the excitation of string modes
in scattering processes and/or in pp-wave backgrounds [19–23].

14.2 Basic Framework and the Jets We Study

Our basic framework for studying jet stopping is to create high-momentum excita-
tions of the strongly-coupled plasma by perturbing the plasma with high-momentum
sources, as in [6, 7], and studying the response. As it will be reviewed below, for
certain types of sources applied to the quantum field theory, the response in the grav-
ity dual is the generation of a highly-localized and highly-oscillatory wave packet
that moves through space while falling in the fifth dimension towards the black
brane horizon. This wave packet has approximately well-defined five-dimensional
position and momentum, and (for 	D1), its motion can be approximated (up
to parametrically small corrections) by a geodesic—that is, by the trajectory that
a particle would take through the AdS5-Schwarzschild background. This particle
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(geometric optics) approximation makes the 	D1 calculation of stopping distances
particularly simple and efficient. We take the 3-momentum of our excitations to be
in the x3 direction, and the stopping distance is simply given by how far in x3

the corresponding geodesic travels before falling into the black brane horizon, as
depicted in Fig. 14.5.7

An obvious effect of the higher-derivative corrections to the supergravity
action on trajectories such as Fig. 14.5 stems from corrections made to the AdS5-
Schwarzschild background, but the dominant effects turn out to be the changes
made to the equation of motion of the wave packets, which will no longer follow
geodesics.

14.2.1 Notation

In these notes we will use Greek letters for four-dimensional space-time indices
(�; � D 0;1;2;3). Lower-case roman letters (a; b) will be used for ten-dimensional
indices. The first five of those 10 dimensions, corresponding to AdS5-Schwarzschild
when 	D1, will be represented by upper-case roman letters (I; J D 0;1;2;3;5).
The remaining five dimensions, corresponding to the compact 5-sphere S5, will be
indicated by dotted lower-case roman letters ( Pa; Pb). When we use the adjective “five-
dimensional” without further qualification, then we are referring to the noncompact
dimensions—those of AdS5-Schwarzschild.

We use the Poincare form of the AdS5-Schwarzschild metric8

.ds/2 D R2

z2
��f .dt/2 C .dx/2 C f �1.dz/2

	
; (14.6)

where z is the coordinate x5 of the fifth dimension, R is the radius of the 5-sphere
(and will drop out of final results),

f � 1 � z4

z4h
; (14.7)

the boundary is at zD0, and the horizon is at

zh D 1

�T
: (14.8)

7For more discussion of why the distance the excitation travels before falling into the horizon
should be identified with the stopping distance in the 3C 1 dimensional field theory problem, see
the discussion in [7], as well as earlier discussions in the context of falling classical strings [3,16].
8The coordinate used in [6, 7] is u D z2=z2h, which is u D .z=2/2 when working in the units
2�T D 1 used there.
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The metric of four-dimensional flat space-time follows the mostly plus conven-
tion: ��� � diag.�1;C1;C1;C1/.

14.2.2 Review of �D1 Results

14.2.2.1 Set Up

The jet stopping problem is addressed using the set up given in [6, 7]. An external
source is applied to the strongly-interacting gauge theory in order to create the initial
high-energy high-momentum excitation. Specifically, we add a source term to the
Lagrangian,

L ! L CN O.x/ ei
Nk�x �L.x/; (14.9)

where N is an arbitrarily small source amplitude, O.x/ is a source operator,

Nk� ' .E; 0; 0; E/ (14.10)

is the large 4-momentum of the desired excitation, and �L.x/ is a slowly varying
envelope function that localizes the source to within a distance L of the origin in
both x3 and time. For example,

�L.x/ D e� 1
2 .x

0=L/2e� 1
2 .x

3=L/2 : (14.11)

L is chosen large compared to 1=E but small compared to the stopping distance we
wish to measure. The small amplitude N is so that we can treat the external source
as a small-perturbation to the strongly-interacting gauge theory, so that the source
will never create more than one jet with energy E at a time.

The source operator O.x/ is a matter of choice. As an example, [6] found it
convenient to focus on “jets” created by an external R-charge field (somewhat
analogous to the excitation that would be created by the hadronic decay of a high-
momentum W boson inside a standard-model quark-gluon plasma, but with isospin
replaced by R charge). In that case the operator was O.x/ D j?.x/, where j� is a
combination of R current operators. The details of the choice of source operator O
are unimportant [7], however, as long as the operator has finite conformal dimension
in the 	D1 limit.

Sometimes in previous work [6], the characteristic 4-momentum Nk of the source
has been taken to be exactly light-like, Nk D .E; 0; 0; E/. Because the source is
confined to a space-time region of size L, the momentum components q� of the
source are smeared out around Nk� by an amount of order 1=L, and so the typical
magnitude of the virtuality q2 � q�q� of the source is then of order jq2j � E=L

� E2.
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In later work, a calculational and conceptual simplification was found if one
instead chooses the characteristic 4-momentum Nk to be just a little bit time-like,

Nk D .E C �; 0; 0; E � �/ (14.12a)

with

1

L
� � � E: (14.12b)

The first inequality guarantees that the uncertainty in momentum does not over-
whelm the size of �. In this case, the source has an approximately well-defined
virtuality in 4-momentum space q of

� q2 � �q�q� ' � Nk� Nk� ' 4�E: (14.13)

This is the case where the response created in the dual gravity theory can be shown
[7] to be a highly localized, highly oscillatory wave packet that falls in the fifth
dimension toward the black brane horizon. The trajectory of the wave packet is the
geodesic that would be followed by a massless five-dimensional particle traveling in
the AdS5-Schwarzschild background as in Fig. 14.5. Calculations using this particle
picture [7] are much simpler and more efficient than calculations directly in terms
of the five-dimensional field excitations [6].

14.2.2.2 The Geodesic

The five-dimensional massm associated with a supergravity field, and therefore with
the five-dimensional particle trajectory, is determined by the conformal dimension
� of the field theory operator dual to that field.9 We take � to be of order one.
It was shown in [7] that, in the high-energy limit, this mass does not affect the
stopping distance for sources described by (14.12) when `stop � `max, which will
be our focus here. So we may ignore the five-dimensional mass and focus on the
trajectories dxI dxI D 0 corresponding to null geodesics in AdS5-Schwarzschild.
The solution for such geodesics (for a metric that depends only on x5 and has four-
dimensional parity) is

x�.x5/ D
Z p

g55 dx5 g��q�

.�q˛g˛ˇqˇ/1=2 ; (14.14)

9It is important to note that the masses of five-dimensional fields in the gravity dual have nothing
to do with the masses of four-dimensional excitations in the N D4 SYM field theory. The five-
dimensional mass m is not the “mass of a jet.”
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where the 4-momentum q˛ with lower index is conserved in five-dimensional
motion and is given by the 4-momentum (14.12) of our source, q˛ D �˛ˇ Nkˇ .

Taking the integral in (14.14) all the way to the horizon for �D3 (the direction
of the jet), and using the metric (14.6), gives the geometric optics approximation to
the stopping distance

`stop '
Z zh

0

dz
jqjq

�q2 C z4

z4h
jqj2

; (14.15)

where we have used rotation invariance to rewrite q3 as jqj. Here and throughout
this review we use the symbol q2 for the 4-virtuality of the source,

q2 � q����q� < 0: (14.16)

We restrict attention to the case �q2 � E2 as in (14.13), as this is the case which
generates stopping distances large compared to 1=T . In this limit, the integral in
(14.15) is dominated by small values of z, of order

z? � zh

��q2
jqj2

�1=4
� zh

��q2
E2

�1=4
� zh; (14.17)

corresponding to the parametric scale labelled x5
? in Fig. 14.5. Neglecting paramet-

rically small corrections, we may replace the upper limit of integration by infinity
in (14.15) to get10

`stop '
� 2. 1

4
/

.4�/1=2

�
E2

�q2
�1=4

1

2�T
: (14.18)

The validity of (14.18) is restricted to the range of validity of the geometric optics
approximation. For a detailed discussion, see [7]. Here, for the sake of simplicity of
this review, we will just give a quick, crude way to see the limit of applicability from
the result (14.18) itself. By the uncertainty principle, the components of the source’s
4-momentum will be smeared out by 1=L, whereL is the source size. Consequently,
the virtuality �q2 given by (14.13) will only be (approximately) well-defined when
�� 1=L and so when

� q2 � E

L
: (14.19)

10See [7] for this explicit result, but the parametric behavior `stop � .E2=�q2/1=4, within its range
of validity, was found earlier by Hatta, Iancu and Mueller [4].
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But the result (14.18) from the geometric optics approximation is only meaningful
if �q2 is approximately well defined. Combining (14.18) and (14.19) requires

`4stopT
4

E
� L : (14.20)

On the other hand, it wouldn’t be sensible to try to measure a stopping distance
unless we choose a source size that is smaller than the distance we wish to measure.
So L needs to satisfy

`4stopT
4

E
� L� `stop : (14.21)

Choosing such anL is possible exactly when `stop � `max with `max given by (14.1).
The chance of propagating excitations created by sources like (14.9) to distances

� `max is negligible. But showing this convincingly requires abandoning the
geometric optics analysis and doing a wave analysis, as in [4, 6]. For most of
this discussion, we stick to the region `stop � `max where the geometric optics
approximation is valid, and then make only parametric extrapolations to the
boundary `stop � `max of the range of validity.

Even for `stop � `max, the geometric approximation eventually breaks down
at sufficiently large z � z?. At that point, however, the wave packet is falling
essentially straight down towards the horizon, and the fact that it can no longer
be treated as a particle no longer matters to how far it travels in x3. The stopping
distance is determined by the behavior of the trajectory for z � z?. (That is, z� z?
and z� z? give parametrically small contributions to the stopping length.)

14.2.2.3 Other Authors’ Methods for Describing “jets”

There is a long history of considering jet-like states that are dual to classical strings
falling towards the horizon in the gravity theory (as well as a history of using
geodesics to help understand the strings’ motion) [3–5]. One difference is that
the maximum stopping distance for these states is parametrically smaller than for
the states we consider—`max for the states related to classical strings scales as
	�1=6E1=3T �4=3 rather than the E1=3T �4=3 of (14.1). It’s amusing to note that,
perhaps coincidentally, 	�1=6E1=3T 4=3 is the same stopping distance scale where
corrections become problematical in our Fig. 14.3. In any case, we will not attempt
here to study 1=	 corrections to previous results based on classical strings.

Yet another, recent method for creating a gluon-like jet is to generate it as a beam
of synchrotron radiation from a heavy quark that is forced into circular motion [8].
These gluon-like jets (under certain conditions) penetrate a distance of order `max

given by (14.1). We will not attempt to study the 1=	 corrections in this synchrotron
problem, but we would not be surprised if they work out similar to the `stop � `max

case in our analysis.
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Finally, since coupling does not run with scale in N D4 SYM, we are treating the
coupling as large at all scales relevant to energy loss. This is in contrast to programs,
such as [2], that try to isolate the soft effects of a strongly-coupled medium on
weakly-coupled hard bremsstrahlung or pair-production vertices.11 For work on 1=	
corrections in that context, see [25].

14.2.3 Determining the Importance of Corrections

In this section we describe the measure used to decide whether or not higher-
derivative corrections to the supergravity action can invalidate the 	D1 result for
finite but large 	 and large energy. We have seen above that the 	D1 stopping
distance is generated by the behavior of the particle trajectory for z � z? given
by (14.17). So the simple way to address our question is to check whether or not
higher-derivative corrections make significant changes to the trajectory for z � z?.
The “importance” represented by the vertical axis of Fig. 14.3 is just the relative
effect on the trajectory at z � z?.

The relative effects of higher-derivative corrections increase with increasing z
(see Appendix 1), and so, at high energies, there is always a point z � z? where,
in the geometric optics approximation, the expansion in effects of higher-derivative
corrections goes bad. In some cases, this will occur for z’s large enough that the
geometric optics approximation has already broken down there anyway. But in all
cases, we work under the following, physically reasonable assumption:

Assumption 1. Once the five-dimensional wave packet has stopped moving significantly in
x3, so that it is falling essentially straight toward the horizon, then it will thereafter continue
falling essentially straight toward the horizon and will not move significantly in x3 again.

Assumption 2. 1=	 corrections do not significantly modify the (approximate) equality
between (i) the late-time x3 position of the five-dimensional wave packet as it approaches
the horizon and (ii) the position where the jet stops and thermalizes in the four-dimensional
field theory as measured, for example, by the center of the late-time diffusing distribution
of R charge.

Under these simplifying assumptions we study the jet stopping distance by
analyzing corrections to how far the five-dimensional wave packet travels.

14.2.4 The Choice of Source Operator

The source operator O.x/ used to generate the jet via (14.9) determines the type
of field that is excited in the dual theory—that is, the type of wave packet whose
trajectory is depicted by Fig. 14.5. To keep our analysis simple, we choose a class of

11For a very brief summary of the relevant scales for the coupling, see, for example, [24].
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source operators that are dual to fields which are five-dimensional scalars after the
S5 reduction. (This restriction can be relaxed as in [13] where a concrete example
of an explicit calculation of a leading correction was given.) Moreover, in ten-
dimensional language, it is convenient to mainly focus on the purely gravitational
terms in the supergravity action (about which the most is known). For convenience
we consider a ten-dimensional field of the form

hab.x; y/ D
(
�.x/ Yab.y/; a; b 2 f6;7;8;9;10gI
0; otherwise;

(14.22)

where x is the AdS5-Schwarzschild coordinate, y is the S5 coordinate, � is a five-
dimensional scalar field, and Y Pa Pb.y/ is any traceless tensor spherical harmonic on
S5. We crudely summarize this choice by writing the field as h Pa Pb when thinking of
it as a ten-dimensional field and as � when thinking of it as a five-dimensional field.

Source operators dual to the fields (14.22) are those operators of the form12

O � tr.		 N	 N	Xk/; k D 0; 1; 2; 
 
 
 (14.23)

obtainable as supersymmetry descendants Q2 NQ2 of tr.XkC4/, where the X are the
adjoint-color scalar fields ofN D4 SYM and 	 are the gluinos. The source operators
(14.23) have conformal dimension � D k C 6 and carry non-trivial R charge (and
so the jets they produce will carry R charge). Different choices k in (14.23) produce
different representations .2; k; 2/ of the SU(4) R symmetry, which correspond to
different types of tensor harmonics Y Pa Pb.y/ in (14.22). None of the details of R
charge representations, which element we choose, or tensor harmonics matter for
what follows.

For simplicity we treat the conformal dimension � of the source operator as
parametrically of order one,� � 1. See [7] for a discussion in the context of 	D1
stopping distances of what happens when � � 1 but with � still parametrically
small compared to powers of E and 	.

14.3 The R4 Correction

Though our final qualitative conclusions do not depend on the exact pattern of
higher-derivative supergravity corrections that arise from Type IIB string theory,
it is convenient to start the discussion with the first one that does, which is R4.

12See, for example, Table 7 of the review by D’Hoker and Freedman [26]. Here Xk is shorthand
for any symmetric product X.i1Xi2 � � �Xik/ of k factors of the three complex scalar fields X1, X2,
X3 of N D4 SYM.
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14.3.1 R4 Term in the Ten-Dimensional Supergravity Action

The first corrections to low-energy supergravity arise from the low-energy limit of
the string-string scattering amplitude, for which NcD1 corresponds to the tree-
level amplitude13

R! RC 1
8
�.3/ ˛03 �C hmnkCpmnqCh

rspCq
rsk C 1

2
C hkmnCpqmnCh

rspCq
rsk
	

(14.24)

or equivalently (via Bianchi identities)

R! RC 1
8
�.3/ ˛03 �C hmnkCpmnqCh

rspCkrs
q C 1

4
C hkmnCpqmnCh

prsCq
krs
	
;

(14.25)

where R is the Ricci scalar in this equation, and ˛0 is the string tension. The usual
duality relation between the string tension and ’t Hooft coupling is [29]

˛0

R2
D 	�1=2 � .g2YMNc/

�1=2; (14.26)

where R is the S5 radius.

14.3.2 The � Equation of Motion

We want to extract the corresponding linearized equation of motion for our five-
dimensional scalar field � � h Pa Pb in the AdS5-Schwarzschild background. By
“linearized,” we mean linearized in �, not in the background metric. That means
that we want terms in the action (14.25) that are quadratic in �.

The C4 correction term is suppressed by ˛03 / 	�3=2 � 1, and so the only
way we can get an unsuppressed correction is if there are compensating factors
of the large energy E associated with the � wave packet created by the source.
The dominant correction is the one with the most powers of E . Powers of E will
arise from derivatives (with indices in AdS5-Schwarzschild) hitting �. The crucial
observation is that one only needs to focus on the pieces of the C4 term in the action
(14.25) that are quadratic in � and have as many five-dimensional derivatives acting
on � as possible.

One way to get a factor of � � h Pa Pb is to consider the piece of the Weyl tensor
Cijkl that involves two five-dimensional derivatives of the S5 metric fluctuation h Pa Pb ,
e.g.

CI PaJ Pb ' � 12rIrJ h Pa Pb: (14.27)

13Equation (14.24) is nicely summarized in Eqs. (3.1–3) of [27] and originates from [15, 28].
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Other terms, with fewer derivatives acting on h Pa Pb , will be suppressed because they
do not generate as many factors ofE . Similarly, a term involving S5 derivatives like
r Pmr Pnh Pa Pb arising from C Pm Pa Pn Pb will be suppressed compared to (14.27) because S5

derivatives of � do not yield factors of E . The dominant terms in C4 that contribute
to the linearized � equation of motion will therefore be those terms that have two
factors of the form (14.27) and two factors of the background Weyl tensor NCijkl of
(AdS5-Schwarzschild)�S5. Now use the fact that the background Weyl tensor NCijkl

in this case vanishes unless all of its indices live in AdS5-Schwarzschild.14 The
dominant C4 terms in the action then have the form

#˛03.rr�/.rr�/ NC NC ; (14.28)

where # indicates some coefficient and the suppressed indices on r and NC are all
five-dimensional indices and contracted.

Such terms only arise from the first term in brackets in (14.25) and not the second.
For 1

4
C hkmnCpqmnCh

prsCq
krs, getting two factors of the form (14.27) would require

evaluating background Weyl tensors NC with at least one S5 index, which gives zero.
The five-dimensional equation of motion for � corresponding to (14.28) has the

schematic form

Œrr C #.˛0/3rr NC NCrr�� D 0; (14.29)

where we have dropped the five-dimensional mass term (determined by the confor-
mal dimension of the source operator and arising in part from S5 derivatives on � in
the leading-order supergravity action). As mentioned earlier, the mass is ignorable
when computing the stopping distance for `stop � `max.

14.3.3 The WKB Approximation and the Point-Particle
Approximation

Next consider solutions to the five-dimensional equation of motion (14.29) that have
large, definite 4-momentum q�:

� D ˚.x5/ eiq˛x
˛

: (14.30)

At high energy, we can make a WKB-like approximation and re-write (14.30) as

� D eiS.x5/ eiq˛x
˛

(14.31)

14This is a statement about the uncorrected, i.e. 	D1, (AdS5-Schwarzschild)�S5 background,
and does not account for corrections to that background due to ˛03C 4. But this is good enough for
figuring out the leading correction to the � equation of motion.
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where S.x5/ is large. As discussed in [6, 7], this approximation only works
sufficiently far from the boundary: z � zWKB where zWKB � 1=

p�q2. But for
`stop � `max (i.e. �q2 � E2=3T 4=3) that is good enough to analyze the stopping
distance, which is dominated by z � z? given by (14.17).

Now use (14.31) in the equation of motion (14.29). 4-space derivatives r� will
give the largest contribution when they hit the phase factor in (14.31) and bring
down a factor of the large q˛ rather than hitting something involving the background
metric. x5 derivatives r5 will give the largest contribution when they hit the eiS.x

5/

in (14.31) and bring down a large factor of i@5S rather than hitting something
involving the background metric. So, in the large-energy limit, the dominant terms
correspond to replacing

rI ! iQI � i.q�; q5/ (14.32)

in the equation of motion for �, where

q5 � @S

@x5
: (14.33)

We capitalize QI just as a way of notationally emphasizing that it is a 5-vector
momentum. The result of (14.32) is to replace the equation of motion (14.29) by

�QIQI C 1
4
�.3/ ˛03QHQKQPQQCH

RSPCQ
RSK ' 0: (14.34)

Before we discuss the parametric size of the ˛03 correction to the 	D1 dispersion
relation QIQI ' 0, well briefly review how to turn a dispersion relation like
(14.34) into a particle trajectory using the geometric optics approximation.

The point-particle or geometric optics approximation consists of approximating
the wave packets as simultaneously having (i) well defined 5-momentum QI ,
satisfying (14.34) above, and (ii) well defined 5-position .x�; x5/. One way to get
the particle equation of motion is to start from the WKB approximation to �.x/ and
to make a wave packet15 �L.x/:

�.x/ �
Z
d4q eiq˛x

˛Ci R q5.q;x
5/ dx5 Q�L.�q/: (14.35)

This integral can be done by saddle point methods, and the saddle point condition is

0 D @

@q�

�
iq˛x

˛ C i
Z
q5.q; x

5/ dx5	; (14.36)

15See [7] for a 	D1 discussion of when the wave packet is small enough to treat as a particle.
The summary is that L can be chosen appropriately so that everything is fine at z � z? when by
convolving with an appropriate localized boundary source function `stop  `max.
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which gives

x� D �
Z

dx5 @q5

@q�
: (14.37)

Formally, we may then use this expression to find the generalization

`stop ' �
Z zh

0

dz
@q5

@jqj (14.38)

of the stopping distance integral (14.15). This integral will require care in interpre-
tation in the region where z is large enough that the expansion in higher-derivative
corrections breaks down. Our focus will be on the relative importance of higher-
derivative corrections in the integrand at z � z?.

14.3.4 The Relative Importance of the C 4 Correction

In cases where C4 effects are a small correction, the dispersion relation (14.34) can
be solved iteratively. That is, first solve the 	D1 equation QIQI D 0 for q5, and
then plug that solution into the correction term and solve

QIQI D 1
4
�.3/ ˛03QHQKQPQQCH

RSPCQ
RSK

ˇ̌
ˇ̌
null QI

(14.39a)

for q5. Explicitly evaluating the AdS5-Schwarzschild Weyl tensor,16 one finds

QHQKQPQQCH
RSPCQ

RSK

ˇ̌
ˇ̌
null QI

D 24 z12jqj4
.zhR/8

: (14.39b)

Eq. (14.39), and the arguments leading up to it, give the leading high-energy terms
of the C4-corrected dispersion relation.

Here is a schematic and general argument which parametrically reproduces
((14.39b). The left-hand side of (14.39b) has the form

g��g��g��g��g��g��Q�Q�Q�Q�C����C����; (14.40)

where we will use bullets (�) to denote five-dimensional indices without focusing
on the details of how they are contracted. (i) The four powers of Q� produce four
powers ofE (as long as they are not contracted with each other). (ii) The six powers

16.C0101 ; C1212; C0505; C1515/ D .f; 1;�3;�f �1/�R2=z4h, with all other components determined
by symmetry.



14 Beyond Supergravity in AdS-CFT: An Application to Jet Quenching 389

of the inverse metric give six powers of z2=R2 for z� zh, for a total of z12=R12. (iii)
Finally, consider C���� for small z. In AdS5-Schwarzschild the Weyl tensor has size

CIJKL � R2

z4
�O�z4

z4h

� � R2

z4h
: (14.41)

Considerations of (i) through (iii) above yield

g��g��g��g��g��g��Q�Q�Q�Q�C����C���� �
�

z2

R2

�6
�E4 �

�
R2

z4h

�2
� z12E4

.zhR/8

(14.42)

for small z, consistent with the exact result (14.39b).
Then solving the five-dimensional dispersion relation (14.39) for q5.q�; x

5/

gives

q5 '
s
g55

�
�q�g��q� C "z12jqj4

z8hR2

�
; (14.43)

where

" � 24

R6
� 1

4
�.3/ ˛03 D 6 �.3/

	3=2
(14.44)

is small.
At this point, we could measure the parametric importance of the C4 correction

simply by comparing the relative sizes of the "z12jqj4=z8hR2 and �q�g��q� terms
in (14.43) at z � z?. But, for the sake of being slightly more explicit, let’s first use
(14.43) to get the stopping distance integral (14.38):

`stop '
Z zh

0

dz
jqj
h
1 � 2"z10

z8h
jqj2

i
q
�q2 C z4

z4h
jqj2 C "z10

z8h
jqj4f

; (14.45)

where q2 � q��
��q� denotes the 4-momentum virtuality. The 	D1 result (14.15)

corresponds to " D 0. There are various features of the integrand in (14.45) that
need to be discussed, but first let’s look at the relative size of the C4 correction at
z? (14.17). Under the square root in the denominator, the �q2 and z4jqj2=z4h terms
are the same size at z � z?—that’s how z? was determined in the first place. Since
z? � zh, we have f ' 1, and the relative size of the correction term is

Importance(C4) �
"z10?
z8h
E4

�q2 �
.�q2/3=2
	3=2ET 2

: (14.46a)
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Using (14.1) and (14.18), this may be rewritten as

Importance(C4) �
�
	�1=4`max

`stop

�6
� 	�1=2

�
	�1=6`max

`stop

�6
; (14.46b)

which gives the R4 (red) line in Fig. 14.3.
The numerator correction in (14.45) is less important at z � z?. The relative size

of its correction to the 	D1 integrand is

"z10

z8h
E2

1
(14.47)

which is smaller than (14.46a) at z � z? by a factor of�q2=E2 � 1. One seemingly
disturbing feature of the numerator correction is its sign for large enough z. For

z�
�
	3=4T

E

�1=5
zh (14.48)

(which is much larger than z?) the integrand is large and negative. And so the integral
(14.45) if blindly integrated up to zh as written, yields a pathological result. But it
can be shown that the expansion in higher-derivative corrections breaks down well
before one reaches z’s as large as (14.48) [13]. Following our assumptions from
Sect. 14.2.3, we therefore stick to (14.46) as the measure of the importance of C4

corrections.
As far as C4 corrections are concerned in regard with Fig. 14.3 we only require

the parametric information (14.46) on the importance of the C4 correction at z � z?.
One might be tempted to attempt to extract an exact size for the leading correction
from the explicit integral (14.45). We show in Appendix 2 why this fails.

14.4 The D2nR4 Corrections

Next we consider the first sequence of higher and higher derivative corrections to the
ten-dimensional supergravity dual, by looking at R4 terms with higher and higher
powers of covariant derivatives.

14.4.1 Review: 4-Point String Amplitude

Just like the R4 interaction in supergravity arises from the low-energy limit of
graviton-graviton scattering in string theory, the D2nR4 operators arise by looking
more generally at the energy/momentum dependence of that scattering. At tree level
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(appropriate for NcD1), the energy dependence of the amplitude is captured by an
overall factor

T .s; t; u/ D � � .�˛0s=4/ � .�˛0t=4/ � .�˛0u=4/
� .1C ˛0s=4/ � .1C ˛0t=4/ � .1C ˛0u=4/

; (14.49)

where s, t , and u are the Mandelstam variables (in 10 dimensions). This result is
an “on-shell” result, which means it is derived for string scattering in a flat-space
background with the external momenta on-shell. That is, the result assumes qaqa D
0 for each of the four ten-dimensional external momenta, which means sCtCu D 0.
Expanding T .s; t; u/ in powers of momenta gives [30]

T D 64

˛03stu
exp

" 1X
nD1

2 �.2nC 1/
2nC 1

�
˛0

4

�2nC1
.s2nC1 C t2nC1 C u2nC1/

#

D 3

�3
C 2 �.3/C �.5/ �2 C 2

3
�2.3/ �3 C 1

2
�.7/ .�2/

2 C 2
3
�.3/ �.5/ �2�3 C 
 
 
 ;

(14.50)

where

�k �
�
˛0

4

�k
.sk C tk C uk/: (14.51)

The first term in the expansion (14.50) corresponds to scattering that occurs through
the interchange of an intermediate graviton, and this process is already accounted
for by the usual Einstein-Hilbert pieceR of the low-energy supergravity action. The
second term in (14.50), when generalized to curved space, gives the R4 interaction
previously discussed in Sect. 14.3. In order, the remaining terms give interactions
that are schematically of the formD4R4, D6R4, etc.

The parametric size of the effects of these interactions on the wave packet
trajectory gives a measure of their importance as depicted in Fig. 14.3. One may
wonder why think about a derivative expansionD2nR4, and worry about where that
expansion breaks down, when it is known that the expansion sums up to (14.49).
There are two reasons. First, in those cases where the expansion is breaking down,
the “on-shell” assumption qaqa D 0 for the graviton momenta also breaks down.
So it is safest to not make any explicit assumptions about the detailed form of the
D2nR4 interactions. Secondly, this provides a useful warm-up to more generally
analyzing higher-derivative corrections D2nRm, which, as shown in Fig. 14.3, are
equally important when the derivative expansion breaks down for D2nR4. As
advertised, everything goes wrong at the same time, and so the explicit formula
(14.49) for the 4-point amplitude is not particularly useful then.
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14.4.2 Factors of ˛0QQ

Earlier we found a five-dimensional dispersion relation for the linearized scalar field
� with schematic form

QIQI D ˛03g��g��g��g��g��g��Q�Q�Q�Q�C����C����
ˇ̌
ˇ̌
null QI

: (14.52)

This arose from terms in the Lagrangian quadratic in �, with five-dimensional form

˛03.rr�/.rr�/CC (14.53)

*-* coming from the ten-dimensional ˛03C 4.
For now, consider what would happen if we went from ˛03C 4 to something of the

form ˛04D2C 4. Naively, we might think that the largest contribution arises from the
case where both of the new derivatives have five-dimensional indices and hit �’s,
modifying the right-hand-side of (14.52) to include an additional factor of

˛0g��Q�Q�: (14.54)

Here the new indices might contract with the other indices in (14.52) or with each
other. If we then note that Q� grows like E , we might at first guess that the
parametric size of the additional factor (14.54) could be as large as

˛0 � z2

R2
� E � E; (14.55)

but this is an overestimate. If all six Q’s in

˛04g��g��g��g��g��g��g��Q�Q�Q�Q�Q�Q�C����C���� (14.56)

are contracted with indices of the two Weyl tensor factors, the result must vanish
because CIJKL is anti-symmetric in IJ and KL. As a result, two of the Q’s must
contract with each other, and so the cost of the factor (14.54) is

˛0QIQI (14.57)

instead of (14.55). In the 	D1 calculation,QIQI D 0. In our calculation here, the
effects discussed earlier arising from the C4 correction change this to (14.39),

QIQI � ˛03 z12E4

.zhR/8
: (14.58)

So the size of the factor (14.54) at z � z? is
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˛0QIQI

ˇ̌
z�z?
� ˛04 z12? E

4

.zhR/8
� .�q2/3
	2E2T 4

�
�
	�1=6`max

`stop

�12
: (14.59)

The term in (14.54) is not, in fact, the dominant contribution for large `stop

simply because of the suppression from having to contract the Q’s. But let’s focus
on this type of contribution for a moment longer. First, (14.59) tells us that this
particular contribution from ˛04D2C 4 becomes just as important as ˛03C 4 when
`stop � 	�1=6`max, and so this is our first example of the breakdown of the expansion
in higher-derivative corrections depicted in Fig. 14.3. If we add yet another factor
of ˛0D2 to go to ˛05D4C 4, and consider just the contributions of the form (14.54)
for that factor as well, then we will get another factor of (14.59), which will also
not be suppressed at `stop . 	�1=6`max. Finally, note that all of the effects discussed
so far are arising from ˛0QIQI factors, which is just the dominant piece of ten-
dimensional ˛0qaqa factors. These are precisely the sort of factors that are left out
of standard string theory “on-shell” results for higher-derivative correctionsD2nR4,
but they become important for `stop . 	�1=6`max.

14.4.3 The Dominant Factors

If we add a factor of ˛0D2 and neither derivative hits a �, then there will be no
powers of E to compensate the suppression from ˛0. The dominant terms come
from the case where one derivative hits a � and the other hits the background field:

˛04g��g��g��g��g��g��g��Q�Q�Q�Q�Q�D�C����C���� : (14.60)

Since the background field depends only on x5, it is natural to consider the
case where the derivative D� hitting the background Weyl tensor is a D5. The
contribution of terms involving other componentsD� ofD� hitting the background
is slightly more subtle and is included in Appendix 3.

Having the D� which hits the background Weyl tensor be D5 means (by four-
dimensional parity invariance) that one of theQ�’s must be q5. Parametrically, aD5

on the background Weyl tensor has size z�1 for z � zh (such as z � z?). So the
factor of ˛0D2 has cost

˛0g55q5 D5.on bkgd/ � ˛0 � z2

R2
� q5 � z�1: (14.61)

The factors in (14.53) can be thought off as a 4-point amplitude with the two �
factors being legs 1 and 3 and the two C factors being legs 2 and 4. Then the cost
shown above corresponds to (the curved background generalization of) an ˛0s or
˛0u factor in the string amplitude expansion (14.50).

For the size of q5, we can just take the 	D1 result fromQIQI ' 0,
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q5 '
q
g55.�q�g��q�/ '

s
�q2 C z4

z4h
jqj2: (14.62)

This is just (14.43) with " ignored. At z � z?, the two terms under the square root
in (14.62) have comparable size, and so

q5
ˇ̌
z�z?
�
p
�q2: (14.63)

The cost (14.61) of ˛0D2 is then

˛0D2jz�z? �
˛0z?

p�q2
R2

� .�q2/3=4
	1=2E1=2T

�
�
	�1=6`max

`stop

�3
: (14.64)

This indeed dominates over (14.59) in the regime `stop � 	�1=6`max where the
expansion in higher-derivative corrections has not already broken down. Multiply-
ing the importance (14.46) of C4 by any number of factors (14.64) gives

Importance(D2nC 4) � 	�1=2
�
	�1=6`max

`stop

�3nC6
; (14.65)

which is shown by the D2nR4 curves in Fig. 14.3. For more details distinguishing
Rm and Cm see [13].

14.5 Higher Powers of Curvature

Similar considerations yield

Importance(D2kC2nC 4Ck) � 	�1=2
�
	�1=6`max

`stop

�6kC3nC6
; (14.66)

as shown in Fig. 14.3. When considering higher-derivative terms A in the super-
gravity Lagrangian, the subset with the dominant effect for a given engineering
dimension dimA has importance

	�1=2
�
	�1=6`max

`stop

� 3
2 dimA�6

: (14.67)

We’ve now seen the basic structure of corrections that give rise to Fig. 14.3, but
there are still a few details to clear up. So far, we have considered only powers of the
Weyl curvature tensor. In Appendix 3, we show that it will not matter, qualitatively,
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if supergravity interactions instead involved the full Riemann tensor at some order
in derivatives.

14.6 Discussion of 1=
p

� Expansion and Reasons
for Its Failure

In this section we explain the reasons for the failure of the 1=
p
	 expansion in the

problematic region (14.4). First, recall the AdS/CFT identifications [29]

gstring D 	

4�Nc
D g2YM

4�
; (14.68)

1

2�TR2
D ˛0

R2
D 	�1=2 � .g2YMNc/

�1=2; (14.69)

where gstring is the string loop expansion parameter. The string tension T sets the
mass scale for massive string excitations, and so ˛0 ! 0 corresponds to taking
the scale for massive string excitations to infinity. For 	D1, the strongly-coupled
four-dimensional quantum field theory is dual to the infrared limit of the ten-
dimensional string theory, namely supergravity, in the appropriate background. For
large but finite 	, massive string modes are not completely ignorable, and the
effective supergravity theory of the massless modes gets corrections, in the form
of higher-dimensional terms in its action, from integrating out the effects of the
massive modes. Schematically, the effective supergravity Lagrangian becomes

L � R C �
˛03R4 C ˛05D4R4 C ˛06D6R4 C 
 
 
 	

C �
˛05D2R5 C ˛06D4R5 C ˛07D6R5 C 
 
 
 	 C 
 
 
 ; (14.70)

where we have focused just on the gravitational fields for simplicity. R represents
factors of the Riemann tensor, and we have not shown numerical coefficients or how
the indices contract. For NcD1, there are no loop effects (gstringD0), and account-
ing for the massive string modes in the effective theory is analogous to replacing the
effects of the W boson by the Fermi 4-point interaction in electroweak theory. So,
for example, theR4 terms in (14.70) are calculated from string amplitudes for 2! 2

graviton scattering and, crudely speaking, they correspond to processes which
involve intermediate massive string states, as depicted schematically in Fig. 14.7.
The R5 terms similarly account for corrections to the 5-point graviton interaction,
and so forth.

In our application, we are interested in the evolution of a high-energy excitation
propagating through the soft AdS5-Schwarzschild background. For simplicity
of presentation, we focused earlier on the case where the excitation is in the
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graviton

gravitongraviton

graviton

massive
string modes

Fig. 14.7 A picture of massive string mode corrections to graviton-graviton scattering that are
accounted for by the DmR4 corrections to the effective supergravity action

high energy
graviton

high energy
graviton

soft
background

soft
background

p1

p2 p4

p3

Fig. 14.8 A high-energy graviton, depicted as a string loop, interacting twice with the AdS5-
Schwarzschild background gravitational field

five-dimensional gravitational fields, though our conclusions will not be sensitive
to this assumption. The relevant string scattering amplitudes are those where two
of the external lines are the incoming and outgoing high-energy gravitons and the
others are the soft background field. So, for a 4-point scattering amplitude such
as Fig. 14.7, the relevant kinematic limit is that depicted in Fig. 14.8. With the
notation used in that figure, the high-energy limit corresponds to potentially large
s D �.p1 C p2/I .p1 C p2/

I but small t D �.p1 � p3/I .p1 � p3/I . [Here
and throughout we may think of the p’s as five-dimensional momenta in AdS5-
Schwarzschild rather than ten-dimensional momenta in (AdS5-Schwarzschild)�S5
because in our problem there is no interesting dynamics associated with the 5-sphere
S5.] The DmR4 terms in (14.70) all become equally important in the jet stopping
problem when this five-dimensional

p
s becomes large enough at z � z? to excite

massive string modes in Fig. 14.8. The string mass scale is of order 1=
p
˛0, and this

condition

p
s(5-dim) & 1p

˛0 (14.71)

which is the same, as we have reviewed earlier, as the condition

`stop . 	�1=6`max; (14.72)

which is the problematic case (14.4) highlighted in the introduction. In this
region, massive string states in the intermediate state in Fig. 14.8 are kinematically
accessible and cannot be ignored.
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As the high-energy excitation falls from the boundary to the horizon, as in
Fig. 14.5, it does not just interact with the background field once or twice but does
so over and over again, as depicted in Fig. 14.9. If the massive string states are
kinematically accessible as in (14.71), then they cannot be neglected in any of the
internal lines, which means in the effective theory language of (14.70) that allDmRn

terms will also become important. This is just what happens at the `stop � 	�1=6`max

point in Fig. 14.3, where all the corrections become the same size, corresponding to
the thresholdps(5-dim) � 1=

p
˛0.

So it is the gravitational effect due to the presence of the black brane that
contributes to massive string mode excitation. As a result, the effects of excited
string modes are negligible at the boundary and become stronger as one moves
away from it (and so closer to the black brane). At some distance from the boundary
which we will review later, the gravitational effects of the black brane become
strong enough that (14.71) is satisfied, which is when string modes may first be
excited.

From the point of view of an effective theory (14.70) of gravitons, having all
the correction terms become the same size (or worse), seems like an hopeless
disaster for the purpose of computations. However, the picture of Fig. 14.9 suggests
a different tack. What is happening is that the ten-dimensional gravitons which
make up the classical excitation are really tiny (quantum) loops of string which
are getting their internal string degrees of freedom excited as they fall in the
background gravitational field. Specifically, internal degrees of freedom of a small
object are affected by gravitational tidal forces, which try to compress the object
in some directions and stretch it in others. In any case, consider the fate of a
single graviton as depicted by Fig. 14.9: a high-momentum object moves through
a soft background field. Various authors have previously studied applications of the
eikonal approximation to string scattering [19,31]. The upshot is that Fig. 14.9 may
be replaced by the evolution of a single string quantized in the classical background
field (Figs. 14.10 and 14.11).

high energy
graviton

soft
background

soft
background

soft
background

soft
background

Fig. 14.9 Like Fig. 14.8 but with many interactions with the soft background field

high energy
graviton

Dp−branes

Fig. 14.10 A high energy massless string mode, such as a graviton, deflected by the gravitational
field sourced by a stack of Dp-branes. The plane of the figure is a plane orthogonal to the Dp-
branes. (So, for instance, a D1-brane could be visualized as a line extending out of the page)
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high energy
graviton

high energy
graviton

Dp−branes

Fig. 14.11 The 2nd-order scattering amplitude for a graviton to elastically scatter from a stack of
Dp-branes, calculated as a string scattering amplitude with two connections to the Dp-branes. This
is only a topological picture: As described in Fig. 14.10, the motion of the graviton is orthogonal
to the Dp-branes in the problem studied by D’Appollonio et al. [19]

14.7 The Penrose Limit

We begin by taking the Penrose limit to describe a narrow region around the null
geodesic reviewed earlier in (14.2.2.2) and depicted in Fig. 14.6.17 For an overview
of taking Penrose limits, see [32–34].

The null geodesic can be written as

dx� D g��q�

!
du; (14.73a)

where u is an affine parameter for the geodesic determined by18

du D !
p
g55 dx5

.�q˛g˛ˇqˇ/1=2 ; (14.73b)

which can be integrated to give u as a function of x5. The normalization of u is just
convention, and the cancelling factors of ! D �q0 in (14.73) have just been chosen
to give u dimensions of length. In the metric (14.6), u is given by

17Penrose limits have previously been studied in AdS5-Schwarzschild by Pando Zayas and
Sonnenschein [35], but the null geodesic studied was different. Their geodesic fell straight toward
the horizon in AdS5-Schwarzschild, corresponding to qD0 in our problem rather than jqj ' E .
Their geodesics also have non-trivial motion on the 5-sphere S5. In our application, no dynamical
evolution of the S5 degrees of freedom takes place, and the S5 string degrees of freedom simply
remain in a quantum state given by the S5 harmonic of the supergravity field of interest.
18This u should not be confused with the coordinate u � .z=zh/

2 used in earlier work by some of
the authors [6, 7].
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u D R2

Z
dz

z2.1 � f jqj2=!2/1=2 ; (14.74)

which is linearly divergent as z! 0. We take u as running from u.zD0/ D �1 at
the boundary to u.zD1/ D 0 at the black brane singularity, and so

u.z/ D �R2

Z 1

z

dz

z2.1 � f jqj2=!2/1=2 : (14.75)

The important thing to remember in what follows is that late times correspond to
small negative values of u (which we will later also call �).

The reference geodesic Nx�.x5/ starts at the origin Nx� D 0 on the boundary.
The 4-positions in AdS5-Schwarzschild are measured relative to this geodesic by
defining

�x� � x� � Nx�.x5/: (14.76)

We choose q to be in the x3 direction. Changing coordinates from x5 and �x0 to
uDu.x5/ and

v � q� �x
�

!
D ��x0 C jqj

!
�x3 (14.77)

puts the AdS5-Schwarzschild metric (14.6) into the form

.ds/2 D 2 du dvC R2

z2

"
.dx1/2 C .dx2/2 C .!2 � f jqj2/

!2
.d�x3/2

C 2f jqj
!

dvd�x3 � f .dv/2
#
; (14.78)

where f is now implicitly a function of u. The Penrose limit consists of keeping
only the terms in the metric that would dominate after a scaling of coordinates

u! u; v! 
�2 v xi ! 
�1xi (14.79)

for very large 
 . This is analogous to making what would be a very large boost
(u! 
u, v! 
�1v) in flat space, and so looking at physics close to the light cone,
followed by rescaling all coordinates by a factor of 
�1. For (14.78), the resulting
limit is

.ds/2pp D 2 du dvC R2

z2

"
.dx1/2 C .dx2/2 C .!2 � f jqj2/

!2
.d�x3/2

#
; (14.80)
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which is a particular example of a pp-wave metricin Rosen coordinates.
The metric (14.80) has the schematic form

.ds/2 D 2 du dvC
X
i

�i .u/ .dyi /
2: (14.81)

It is useful to normalize the last term by switching to Brinkmann coordinates

Oyi � yi
p
�i .u/ (14.82)

and

Ov � v � 1
2

X
i

@u.ln
p
�i / Oy2i (14.83)

to give

.ds/2 D 2 dudOvC
X
i

.d Oyi /2 C
�X

i

@2u
p
�ip
�i
Oy2i
�
.du/2 : (14.84)

In our case, using (14.74) to rewrite

@u D z2

R2

�
1 � f jqj

2

!2

�1=2
@z; (14.85)

the metric in Brinkmann coordinates is

ds2pp D 2 dudOvC.d Ox1/2C.d Ox2/2C.d� Ox3/2CG .u; Ox1; Ox2; � Ox3/ .du/2 (14.86)

with

G .u; Ox1; Ox2; � Ox3/ D G1.u/
�
. Ox1/2 C . Ox2/2

	C G3.u/ .� Ox3/2; (14.87a)

G1.u/ D G2.u/ D @2u.z
�1/

z�1 D z3f 0jqj2
2R4!2

D �2 z6jqj2
z4hR4!2

' �2 z6

z4hR4
; (14.87b)

G3.u/ D @2u
�
z�1.!2 � f jqj2/1=2	

z�1.!2 � f jqj2�1=2 D z3.f 0 � zf 00/jqj2
2R4!2

D 4 z6jqj2
z4hR4!2

' 4 z6

z4hR4
:

(14.87c)

Here, primes denote derivatives with respect to z, and zDz.u/ is implicitly a function
of u, determined by inverting (14.75). The metric (14.86) would be flat if not for
the Gi , which arise from tidal forces. Note that these tidal terms vanish for null
geodesics in pure AdS (fD1, or equivalently zh!1), in agreement with general
arguments that the Penrose limit of AdS is flat Minkowski space [32]. They also
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vanish in AdS5-Schwarzschild if qD0 (i.e. if the excitation fell straight down in the
x5 direction as a function of time x0).

14.8 Quantizing the Falling Closed String

14.8.1 Overview

The string quantization in a pp-wave background proceeds straightforwardly [19–
23]. The bosonic sector is described by a �-model in the pp-wave background
metric:

S D � 1

4�˛0

Z
d� d�

p�
 
˛ˇ.@˛XI /.@ˇX
J / gIJ.X/; (14.88)

where 
 is the world-sheet metric and XI are the world-sheet fields corresponding
to the coordinates. For the pp-wave space-time metric (14.86), this takes the form

S D S0 � 1

4�˛0

Z
d� d�

p�
 
˛ˇ.@˛U /.@ˇU /G .U;� OX/; (14.89)

where S0 is the Minkowski string action. Identifying world-sheet time � with the
affine parameter u for the pp-wave space-time metric (14.86) then gives a constraint
equation for @˛ OV and gives the light-cone gauge Lagrangian

L D pu

2

Z 2�

0

d�

2�

X
i

�
@�� OXi @�� OXi�.˛0pu/�2@�� OXi @�� OXiCGi .�/� OXi � OXi

�

D pu

2

X
i

1X
nD�1

�
@�� OXi

n

�
@�� OXi

n � !2i;n.�/� OXi
n

�
� OXi

n

�
(14.90)

for the � OXi , where pu D pOv ' E and� OXi DPn �
OXi
n.�/ e

in� and

!2i;n.�/ �
n2

.˛0pu/2
� Gi .�/: (14.91)

(We have suppressed the fields corresponding to S5 coordinates because they will
play no role in our discussion.) We have chosen a convention where � has units of
time and � is dimensionless.

Each mode � OXi
n of the string is a time-dependent harmonic oscillator problem

with classical frequency !i;n.�/. The � OX1
n and � OX2

n modes are tidally compressed
as the string moves away from the boundary since G1 D G2 is negative in (14.87b),
so that the curvature !1;n.�/ of the harmonic oscillator potential increases with time
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�Du. In contrast, the � OX3
n oscillators are tidally stretched, since G3 is positive in

(14.87c):

!23;n.�/ D
n2

.˛0pu/2
� G3.�/: (14.92)

When the string gets far enough from the boundary (i.e. at late enough times �),
the G3 term in (14.92) becomes dominant and � OX3

n oscillators become unstable.
Physically, this is when tidal forces come to dominate over string tension. Using
(14.87c), this instability occurs when z � zn, where

zn '
�
nz2hR2

2˛0E

�1=3
D 	1=6

�
nz2h
2E

�1=3
D n1=3z1: (14.93)

The instability for the center-of-mass mode nD0 is not particularly interesting: it
has nothing to do with exciting internal degrees of freedom of the string and just
reflects the slight spread of the falling wavepacket in Fig. 14.5 due to curvature
effects. Disregarding the n 6D 0 modes, the first tidal instability kicks in at z ' z1.

Recall that z?, defined earlier in (14.17), characterizes the scale where the x3

motion of the bulk excitation in Fig. 14.5 is coming to a stop (no significant motion
for z� z?). Using (14.18) and (14.1), the ratio of the instability scale zn to z? is

zn
z?
� n1=3	1=6.z2h=E/

1=3

zh.�q2=E2/1=4
� n1=3`stop

	�1=6`max
: (14.94)

So the tidal instability kicks in before the stopping distance is reached (z1 .
z?) precisely when we are in the interesting regime `stop . 	�1=6`max (14.4)
identified in earlier work as the case where stringy corrections become important.
Correspondingly, the modes which become tidally unstable for z . z? are n . n?
with

n? �
�

`stop

	�1=6`max

��3
: (14.95)

Although the instability develops at z D zn, the modes n . n? do not have time
to stretch significantly until z � z?. This fact is suggested by the geodesic picture in
Fig. 14.15: For z� z?, the impact of the black hole on the evolution in Fig. 14.15c is
negligible, and so the evolution at those times is well approximated by the pure AdS
case of Fig. 14.15a and b, for which the proper size of the string remains constant.

Once a given mode becomes unstable, the quantum mechanics of that mode will
be somewhat analogous to a standard quantum mechanics thought experiment: What
is the longest time that an idealized pencil can be balanced on its tip before it falls?
Because of the uncertainty principle, the pencil cannot be started simultaneously
at rest and perfectly vertical, and so it must fall. The pencil might be started in a
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Gaussian wavepacket chosen to maximize the average fall time. But it is clear that,
once the top of the pencil has fallen a macroscopic distance, classical mechanics will
suffice to describe its subsequent motion: at that time, its position and momentum
may, to excellent approximation, be considered as simultaneously well defined. For
late enough times t1, the pencil’s motion for t > t1 is approximately classical, with
the only effect of its initial wave packet at tD0 being to determine a classical
probability distribution for the pencil end’s position at t1. The corresponding
momentum at t1 is given (to excellent approximation) by the momentum the pencil
would have picked up falling classically to that position from vertical.

For the string modes n . n? of interest, the analogous transformation from a
quantum description to a probability distribution for classical configurations occurs
when z� z?.

14.8.2 Solution of the Time-Dependent Harmonic Oscillators

14.8.2.1 Basics

The distinction between �Xi (the difference between Xi and the reference
geodesic) and Xi does not affect the n ¤ 0 modes that are our focus. Similarly
for the normalized coordinates � OXi . Therefore we make our notation a little less
cumbersome and henceforth write � OXi

n as simply OXi
n (for n ¤ 0).

Each of the real degrees of freedom
p
2Re OXi

n and
p
2 Im OXi

n in (14.90) have a
harmonic oscillator Lagrangian of the form

L D 1
2
m
� Px2 � !2.�/ x2�; (14.96)

with the translation m ! pu ' E and !2.�/ ! !2i;n.�/. The squared frequency
!2.�/ starts at a non-zero value !2.�1/ and then changes with time � . The
quantum mechanical solution to such time-dependent harmonic oscillator problems
has a long history. Useful explicit formulas for wave functions may be found in
[36], with applications to strings in pp-wave backgrounds in [20, 22]. In our case,
the harmonic oscillators all start in their ground state (the string state describing a
graviton) at early times (� ! �1) and so start with Gaussian wave functions. For a
time-dependent harmonic oscillator that starts as a Gaussian  .x/ / expŒ�x2=4�2�
at some time �0, one may check that the Schrödinger equation

i P D
h
� 1

2m
@2x C

1

2
m!2.�/ x2

i
 (14.97)

is solved by

 .x; �/ / 1p
�.t/

exp



i

2

P�.t/
�.t/

mx2
�
; (14.98)



404 D. Vaman

where the complex-valued function �.�/ satisfies the classical equation of motion

R� D �!2.�/ � (14.99)

with initial conditions

�.�0/ D 1; P�.�0/ D i

2m�2
: (14.100)

In our case, where we start in the early-time ground state, that’s

�.�0/ D 1; P�.�0/ D i !.�1/ (14.101)

with �0 ! �1.
The corresponding probability distribution j .x; �/j2 for x is just a Gaussian

distribution

Prob.x; �/ D e�x2=2x2rms.�/

.2�/1=2 xrms.�/
(14.102)

with width

xrms.�/ D j�.�/jp
2m!.�1/ D j�.�/j xrms.�1/: (14.103)

Using (14.92), xrms.�1/ corresponds to
p
˛0=2n.

The remaining task is to solve the classical equation of motion (14.99) for �. For
the case of interest OX3

n , using (14.17), (14.85), (14.87c), (14.92), and ! ' jqj ' E ,
the � equation may be put into the form

d2�

d N�2 D �4.�
6 � Nz6/�; (14.104a)

d Nz
d N� D Nz

2.1C Nz4/1=2; (14.104b)

where

Nz � z

z?
; (14.105)

N� � z3?
z2hR2

�; (14.106)

� D �n � n1=3�1 �
�n
2

�1=3 z2h=z?

	�1=6z4=3h E1=3
: (14.107)
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In these variables, the initial conditions (14.101) on � are

�. N�0/ D 1; d�

d N� . N�0/ D 2i�
3 : (14.108)

Note from (14.1) and (14.18) that, parametrically,

�1 � `stop

	�1=6`max
; (14.109)

and so the smallness of �1 is a specific measure of how far we are into the interesting
regime (14.4) of `stop . 	�1=6`max. The modes n . n? of interest to us correspond
to �n . 1.

Using the above equations, one may check that the string does not stretch
significantly in proper size at early times z � z? (Nz � 1).But it is what the string
does at late times which is more relevant.

14.8.2.2 Late-Time Behavior

For z� z? (which is Nz� 1), the Nz equation (14.104b) gives

Nz D .�3 N�/�1=3; (14.110)

remembering that our convention is that � is negative and that �.zD1/ D 0. Note
from (14.110) that �N� is very small at the horizon z D zh, where �N� � .zh=z?/�3 �
.�q2=E2/3=4 � .`stopT /

�3.
Plugging (14.110) into the � equation (14.104a) yields late-time (Nz � 1)

solutions � / .�N�/�1=3 and � / .�N�/4=3. The dominant solution will be

� / .�N�/�1=3: (14.111)

Though� is a complex-valued function whose purpose is to track the evolution of
the wavepacket, exactly the same arguments as above give that a classical trajectory
would have late-time behavior x / .�N�/�1=3. That means that Px / .�N�/�4=3, and
so x and Px both become large at late times, justifying a classical description at late
times.19 The classical relation between the two is determined by x / .�N�/�1=3 to
be

19For example, at late times the exponential in the wavepacket (14.98) becomes expŒiS�, where
S / x2=.��/. The WKB condition j@2xS j  .@xS/

2 is satisfied as � ! 0 for x / .��/�1=3. We
will see shortly that the proportionality constant in (14.111) is of order 1 for the modes n . n?
of interest. If one keeps track parametrically of all the proportionality constants in the exponential
expŒiS�, one finds more specifically that the WKB condition is satisfied when �N�  1 (i.e. Nz � 1).
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Fig. 14.12 The
proportionality constant C.�/
in (14.113), which determines
the late-time width of the
probability distribution for
the amplitude of a string
mode. The sloping dashed
curve shows the large-�
approximation (14.114a)
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One may extract the proportionality constant in the late-time behavior (14.111)
by solving (14.104) numerically with initial conditions (14.108) for �, matching
the late time behavior of the numerical solution to (14.111), and repeating the
calculation for earlier and earlier values of �0 in order to take the �0 ! �1 limit.
The late-time behavior is

j�. N�/j ! C.�/

.�N�/1=3 (14.113)

with C.�/ given by Fig. 14.12.20 We show in Appendix 4 that the limiting behavior
for large � is

C.�/ ' � .5
6
/

�1=2�
for � � 1; (14.114a)

shown as a dashed curve in the figure. In the opposite limit of � � 1, our numerical
results approach a constant

C.�/ ' 0:6428 for � � 1: (14.114b)

From (14.92), (14.103) and (14.113), and remembering that the analogs of x arep
2ReXi

n and
p
2 ImXi

n, the late time probability distribution of mode amplitudes
OX3
n is given by a Gaussian with width

20For numerical work, it is mildly convenient to eliminate N� and express all of the relevant equations
solely in terms of Nz, giving Nz4.1C Nz4/�00 C 2Nz3.1C 2Nz4/�0 D �4.�6 � Nz6/� and �0.Nz0/ D 2i�3=Nz20
(with Nz0 ! 0) and j�.Nz/j ! 31=3 C.�/ Nz (as Nz ! 1).
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ˇ̌ OX3
n

ˇ̌
rms '

C.�n/

.�N�/1=3
�
˛0

2n

�1=2
for �N� � 1: (14.115)

Using (14.110), that may be rewritten as

ˇ̌ OX3
n

ˇ̌
rms ' 31=3 C.�n/

z

z?

�
˛0

2n

�1=2
for z� z�; �n: (14.116)

As in (14.112), the corresponding momenta in this classical regime are related to
the mode amplitudes OX3

n by

@N� OX3
n '

OX3
n

�3 N� '
z3

z3?
OX3
n : (14.117)

Using (14.80) and (14.82), the conversion between the normalized coordinate
� Ox3 and the displacement�x3 from the reference geodesic in Poincare coordinates
is

�x3 D z

R

�
1 � f jqj

2

!2

��1=2
' z

R

�
z4? C z4

z4h

��1=2
� Ox3; (14.118)

which is

�x3 ' z2h
zR
� Ox3 for z� z?: (14.119)

So, from (14.116), the amplitudes of the stretched modes in the Poincare coordinate
system are

ˇ̌
X3
n

ˇ̌
rms ' 31=3 C.�n/

z2h
z?R

�
˛0

2n

�1=2
D 31=3 C.�n/ z2h
.2n/1=2	1=4z?

(14.120)

for fixed � (and so fixed z) in the classical regime. Using (14.18) and (14.17), this
may be written as

ˇ̌
X3
n

ˇ̌
rms '

31=3.8�/1=2 C.�n/

n1=2 � 2. 1
4
/

	�1=4`stop (14.121)

for z� z?; �n.
Note that fixed-� (i.e. fixed-z) slices of the string worldsheet look different than

fixed-x0 slices of the string worldsheet, which is why our depiction of the string at
various times x0 in Fig. 14.15c were not horizontal.
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14.8.3 The Size of the String at Late Times

Parametrically, the average size (14.121) of each stretched mode X3
n in Poincare

coordinates is just the 	�1=4`stop which can be easily found with a back-of-the-
envelope argument (see [37]). The total average size of the string is however given
by summing all the modes. A convenient measure of the size scale of the string is
the average rms deviation from the center of the string,

.ıX3/rms �
� �
X3 � X3

�2 �1=2
; (14.122)

where overlines indicate averaging over the string worldsheet position � and the
angle brackets indicate averaging over the late-time classical probability distribution
for each mode amplitude. This is given by

.ıX3/rms D
�
2

1X
nD1

˝ˇ̌
X3
n

ˇ̌2˛�1=2
: (14.123)

˝ˇ̌
X3
n

ˇ̌2˛
is just the square of what we called

ˇ̌
X3
n

ˇ̌
rms in (14.121). Combining the

limiting forms (14.114) with (14.121), and recalling from (14.107) that �n D n1=3�1,

jX3
n

ˇ̌2
rms '

 
31=3.8�/1=2

� 2. 1
4
/

	�1=4`stop

!2
�
8<
:
ŒC.0/�2

n
; n� n?I

� 2.
5
6
/

��21 n
5=3 ; n� n?;

(14.124)

where C.0/ is given by (14.114b). The sum in (14.123) is therefore convergent at
large n and is dominated by a logarithm coming from n D 1 up to n � n?. At
leading order in inverse powers of that logarithm,

.ıX3/rms ' jX3
1 jrms

p
2 lnn? ' 31=34

p
� C.0/

� 2. 1
4
/

	�1=4`stop

p
ln n?: (14.125)

Using (14.95), this may be rewritten as

.ıX3/rms ' 0:8660 	�1=4`stop ln1=2
�
	�1=6`max

`stop

�
; (14.126)

where a parametric expression for the argument of the logarithm is adequate if we
are only keeping track of the logarithmic term.

Ignoring the numerical constant in front, (14.126) is the parametric result (14.5)
that we presented in the introduction.

The logarithm in (14.125) arises because of (i) the logarithmic UV divergence
associated with the bosonic modes in the ground state, combined with (ii) the fact
that the bosonic mode amplitudes with n � n? all grow by an equal large factor
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from tidal stretching (and no longer cancel against fermionic modes in their physical
consequences), while those with n� n? do not grow significantly in comparison.

At this stage one must check that the string is not so big, or so far away from
the reference geodesic, that the Penrose limit taken in Sect. 14.7 breaks down. This
amounts to verifying that the dv d�x3 and .dv/2 terms in the AdS5-Schwarzschild
metric (14.78), which were dropped in the Penrose limit, are parametrically small
compared to the du dv term,

f R2

z2
jqj
!
jdv d�x3j and

f R2

z2
.dv/2 � jdu dvj; (14.127)

for the string motions that we have found. Dividing both sides by jdu dvj and using
! ' jqj, we rewrite these conditions as

f R2

z2

ˇ̌
ˇ̌d�x3

du

ˇ̌
ˇ̌ and

f R2

z2

ˇ̌
ˇ̌dv

du

ˇ̌
ˇ̌ � 1: (14.128)

These conditions on the string motion are further analyzed in Appendix 6, where we
find that the condition on jd�x3=duj is the strongest and requires

	�1=4plnn? � 1 (14.129)

in order for our earlier analysis to be valid. Using our result (14.125), this condition
may be written as

.ıX3/rms � `stop: (14.130)

That is, the Penrose limit only breaks down if one considers the extreme case (to be
discussed in a moment) where the string becomes as large as the stopping distance
itself.

14.9 Discussion

In our scheme for creating “jets,” we have seen different behaviors in the dual theory
depending on the virtuality (and so the stopping distance) of the jet. For `stop �
	�1=6`max, the gravitons (or other massless string modes) composing the excitation
in the gravity description remain gravitons until after the excitation has stopped
moving in the x3 direction, and there is no difficulty in using the supergravity
approximation for the calculation. For `stop � 	�1=6`max, each graviton is instead
stretched into a classical string loop. However, provided that

	�1=4 ln1=2
�
	�1=6`max

`stop

�
� 1; (14.131)
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the size of that string remains small compared to the stopping distance `stop. The
string remains close to its reference geodesic, and so corrections to the 	D1
description of the jet stopping are parametrically small (if one only attempts to
resolve details on size scales large compared to the size of the string). However,
if instead

	�1=4 ln1=2
�
	�1=6`max

`stop

�
& 1; (14.132)

then the string loop will stretch out to be parametrically as large as the stopping
distance itself. Our quantum analysis of the string breaks down in this case (because
of the failure of the Penrose limit), but we can see what happens qualitatively by
tracking what happens to the 	�1=4 log1=2 � 1 results as we increase the logarithm
towards 	�1=4 log1=2 � 1.

In particular, a nice way to visualize what happens is to follow the classical
evolution of a closed string that initially starts with a proper size ˙ of orderp
˛0 lnn?, which is roughly the initial rms size from the modes n . n? which

become classically excited. Increasing the logarithm towards 	�1=4plnn? � 1

is equivalent to increasing ˙ towards � R. Figure 14.13 compares examples of
such evolution for the cases (a) 	�1=4 log1=2 � 1 and (b) 	�1=4 log1=2 � 1.
The interesting feature of Fig. 14.13b is that, at late times, the string looks like
the original picture advocated by Gubser et al. [3] of gluon jets as dual to the
evolution of a trailing, folded classical string falling in AdS5-Schwarzschild. Our
string is a folded closed string, as depicted in the cartoon of Fig. 14.14a, whereas
the one studied by Gubser et al. was a folded infinite open string, as depicted by
Fig. 14.14b.21 However, the left end of the string in these figures, which is very
close to the horizon, does not play a significant role in the effect on the boundary
theory, and so the physics of these two situations is approximately the same.

Historically, the original motivation of our own method for posing “jet” stopping
problems [6], outlined in the introduction to this paper and motivated by Fig. 14.1,
was to give a precise field theory problem in N D4 SYM that could be solved,
beginning to end, using gauge-gravity duality. It has not previously been know how
to precisely set up a problem in N D4 SYM that corresponds to earlier studies of
jets [3–5] that made use of classical strings in the gravity description. It is interesting
to now make contact between our approach and Gubser et al.’s classical string
approach, in the particular limit (14.132), which can be roughly rewritten as

T �1 � `stop . T �4=3
�
Ep
	

�1=3
e�O.	1=2/; (14.133)

21More precisely, Gubser et al. first considered a folded open string that stretched out from beyond
the horizon, as in Fig. 1 of [3]. But in actual calculations, they focused on the trailing infinite folded
string, as in Fig. 2 of that reference.
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Fig. 14.13 Examples of numerical solutions of the evolution of a falling classical string loop that
starts near the boundary with proper size (a) ˙  R and (b) ˙ � R. These are snapshots of the
string at fixed x0. See Appendix C of [37] for details of the initial condition
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Fig. 14.14 Schematic pictures of classical folded strings. (a) A closed folded string produced
by extreme tidal stretching of a graviton in our method of generating “jets” in the case of
	�1=4 log1=2 & 1 (14.132), and (b) the infinite, folded open string considered by Gubser et al. [3].
In the latter case, the trailing string continues to get closer and closer to the horizon as x3 ! �1
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where the T �1 � `stop is thrown in to emphasize that we’ve always been assuming
�q2 � E2 and so T �1 � `stop throughout, and where O means “of order.”
Alternatively, in terms of the virtuality �q2 of the source of our “jet,” (14.133) is

E2 � �q2 & T 4=3E2=3	2=3eCO.	1=2/: (14.134)

This window of stopping lengths only appears once the jet energy is large enough
that

E � T
p
	 eCO.	1=2/: (14.135)

Even though there is a region of overlap (14.133) of our results with strings
that look similar to those of Gubser et al., there are still important differences once
we get out of this range. Gubser et al. found a maximum stopping distance of order
T �4=3.E=

p
	/1=3, as do other methods that also model excitations with semi-infinite

classical strings in the gravity dual [5]. In contrast, the types of excitations that
we create, through processes like Fig. 14.1, have a parametrically larger maximum
stopping distance of order `max � T �4=3E1=3.

To conclude, we would like to highlight a remaining mystery concerning the
	-dependence of stopping distances: How does the E1=3 scaling of the maximum
stopping distance at 	D1 transition to E1=2 at small 	? One might naively guess
the scaling to be of the form22

`max / Ef.	/ (14.136)

for some function f .	/ with f .0/ D 1
2

and f .1/ D 1
3
. One might further hope

that f .	/ has relatively simple expansions around 	D0 and 	D1. For example,
perhaps

f .	/ D 1
2
C #	C #	2 C 
 
 
 (14.137)

and

f .	/ D 1
3
C #	�3=2 C #	�5=2 C 
 
 
 ; (14.138)

where the # signs represent numerical coefficients. The details of the expansion
don’t matter—one can imagine there could be different powers of 	 than shown
above, or factors of ln	 in the expansion, and so forth. But take (14.138) as an
example. Then, expanding (14.136) around 	D1,

22We ignore here logarithmic energy dependence in the prefactor of the exponential. The small-	
scaling is really .E= lnE/1=2, which is equivalent to including a log-of-log energy dependence in
the exponent f : .E= lnE/1=2 D expŒ 1

2
� 1

2
ln lnE�.
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`max / E1=3
�
1C #	�3=2 lnE CO.	�5=2/

	
: (14.139)

We might therefore expect if we compute something that is related to the maximum
stopping distance, like `tail, the corrections in powers of 1=	 should also come with
powers of lnE , as above. But there is no sign of a lnE factor in our concrete
formulae for `tail (14.3). Perhaps the exponent f .1/ D 1

3
does not receive

corrections until a yet-higher power in 	, but we are unsure how a lnE could arise in
yet-higher-order calculations of the shift of the quasi-normal mode pole. Or perhaps
the exponent does not have an expansion in powers of 1=	 but instead behaves like
1
3
C#e�#	 for large 	. Or perhaps the tail scale `tail is a misleading stand-in for `max,

as is known to happen in the case of �� 1 [7]. Whatever the resolution, given the
absence of a lnE in our result for `tail, the question of how E1=3 begins to make its
way towards E1=2 (and vice versa) remains an open question.

Appendix 1: What Happens for z � z??

By making the reasonable assumptions that we outlined in Sect. 14.2.3, we have
managed to analyze the question of when corrections become important by focusing
on particle trajectories at z � z?. As z increases beyond this scale, the forward
progress of the trajectory slows to a stop.We previously asserted that at some scale
zbad � z? the expansion in higher-derivative corrections would eventually break
downeven if the expansion was well behaved at z?.

Start by considering the cost of an ˛0D2 factor, which we analyzed in Sect. 14.4.3
for z � z?. At larger z, with z? . z� zh, (14.62) gives

q5
ˇ̌
z&z?
� z2E

z2h
: (14.140)

Then the cost (14.61) of each ˛0D2 factor is

˛0D2jz&z? �
˛0zq5

R2
� z3ET 2

	1=2
: (14.141)

This cost is unsuppressed for z & zbad, where

zbad � 	1=6

E1=3T 2=3
: (14.142)

The same constraint arises from the other important corrections that we analyzed.
For instance, the cost of adding an ˛02D2C factor was z6E2=	z4h, which also
becomes unsuppressed at the same z & zbad.

Note that the requirement `stop � 	�1=6`max for the expansion in corrections to
be well-behaved in Fig. 14.3 is the same condition as requiring zbad � z?.
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Appendix 2: Why (14.46) Cannot Precisely Determine �`stop

Consider the safe region `stop � 	�1=6`max of Fig. 14.3, where the effects of higher-
dimensional supergravity interactions should be suppressed. The R4 corrections
then dominate the corrections at z � z?. We might then be tempted to use the explicit
form (14.25) of theR4 correction, combined with the particle-based formula (14.38)
for the stopping distance, to explicitly calculate the first correction to the 	D1
result (14.18) for the stopping distance. In this appendix, we discuss why that does
not work.

We start with (14.45),

`stop '
Z zh

0

dz
jqj
h
1 � 2"z10

z8h
jqj2

i
q
�q2 C z4

z4h
jqj2 C "z10

z8h
jqj4f

: (14.143)

First we explain why the potentially sign-changing behavior of the numerator
correction in the R4-corrected formula (14.143) for the stopping distance could be
ignored. The disturbing features of this correction arise in the z range given by
(14.48),

z� zdisturbing �
�
	3=4T

E

�1=5
zh: (14.144)

This difficulty only arises at all if zdisturbing < zh, which requires

E � 	3=4T: (14.145)

Now compare (14.144) and (14.142):

zdisturbing �
�

E

	1=8T

�2=15
zbad: (14.146)

The inequality (14.145) then gives

zdisturbing � zbad; (14.147)

and so the numerator correction cannot be believed in the range of z for which it
becomes disturbing.

Dropping the numerator correction from (14.143) leaves

`stop '
Z zh

0

dz
jqjq

�q2 C z4

z4h
jqj2 C "z10

z8h
jqj4f

; (14.148)
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For simplicity, in what follows we will just analyze the case E � 	3=4T .
In the integrand, look at the expression under the square root in the denominator.

The relative importance of the "z10 term grows with increasing z. For z� z?, the z4

term under the square root dominates over the �q2 term, so we should compare the
"z10 term to the z4 term. These are the same size at a scale z?? � z? given by

z?? � z2=3h

"1=6jqj1=3 �
	1=4

E1=3T 2=3
� 	1=4

lmaxT 2
; (14.149)

assuming that z?? � zh so that f ' 1. But z?? � zh follows from (14.149) and our
consideration of E � 	3=4T .

Now calculate the correction �` to the stopping distance by subtracting the
	D1 result (14.15) from (14.148),

�` � `stop � `	D1
stop '

Z zh

0

dz

2
64 jqjq
�q2 C z4

z4h
jqj2 C "z10

z8h
jqj4f

� jqjq
�q2 C z4

z4h
jqj2

3
75:

(14.150)

This integral is dominated by z � z??. So, to explicitly calculate �` will require
trusting the integrand at z � z?? given by (14.149). Compare this to the z scale
(14.142) where the expansion in supergravity corrections breaks down:

z?? � 	1=12zbad � zbad: (14.151)

So we cannot trust (14.150) in the range of z where we want to use it to get an
explicit result for�`.

Appendix 3: Other Higher-Derivative Terms

In Sect. 14.4.3, we addressed the ˛0Q5D5 piece of ˛0D2 when studying the
importance of D2nC 4. We also recycled our conclusion from that analysis when
later considering applying extra powers of derivatives to D2kC 4Ck . The dominant
terms involved ˛0QIDI where theDI hits a background Weyl tensor. We motivated
focusing on Q5D5 by noting that the background Weyl tensor depends only of the
x5 coordinate. If the D’s were ordinary derivatives instead of covariant derivatives,
that would be the end of the story. However, the other components D� of the
covariant derivative do not vanish when applied to the background Weyl tensor.
In fact, they are parametrically of order 1=z, just like D5. As a result, for example,

˛0Q3D3 D ˛0Q3g
33D3 � ˛0 �E � z2

R2
� 1

z
� Ez

	1=2
(14.152)
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is actually parametrically larger than the derivative

˛0Q5D5 � q5z

	1=2
(14.153)

considered in the main text (14.61).
So why doesn’t this lead to much larger results for the importance of D2nR4

and other operators than shown in Fig. 14.3? Our answer requires thinking about
how the indices of the background Weyl tensor CJKLM hit by ˛0QIDI contract with
everything else.

Because CIJKL depends only on x5, a non-zero value forQ�D�CIJKL arises only
from the terms of D involving the Christoffel symbols:

Q�D�CIJKL D �Q��
NI
I�C NIJKL �Q��

NJ
J�CI NJKL � 
 
 
 : (14.154)

Now write

� D � .AdS/ C��; (14.155)

where � .AdS/ is the zero-temperature, purely AdS expression for the connection
� . The difference between AdS and AdS5-Schwarzschild is the difference between
taking f D 1 and f D 1� .z=zh/

4 in the metric (14.6). As a result, the�� piece of
(14.155) is suppressed compared to the � .AdS/ piece by order .z=zh/

4. For studying
the dominant corrections at z � z? � zh, we should therefore focus on � .AdS/. In
particular,

˛0Q���
NI
I� � ˛0E � z2

R2
� 1

z

�
z

zh

�4
� Ez5

	1=2z4h
(14.156)

is always less important at z � z? than the ˛0Q5D5 term (14.153) that we considered
in the main text.

So now focus on � AdS:

Q�D�CIJKL ' �Q�.�
NI
I�/

AdSC NIJKL �Q�.�
NJ
J�/

AdSCI NJKL � 
 
 
 : (14.157)

Because AdS space has four-dimensional Lorentz invariance, the � index on Q�

above must pass through to contract with something else. For example,

Q�.�
NI
I�/

AdSC NI JKL � .other stuff/IJKL

' 1

z
Q�C�JKL�.other stuff/5JKL�1

z
C 5

JKLQ��.other stuff/�JKL

(14.158)
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and

Q�.�
NJ
J�/

AdSCI NJKL � .other stuff/IJKL

' 1

z
Q�CI�KL�.other stuff/I5KL � 1

z
CI

5
KLQ��.other stuff/I�KL

(14.159)

But now recall that our dominant terms already had every C contracted with two
Q’s. So the “other stuff” above had the form

.other stuff/IJKL � QIQK.something/JL; (14.160)

and these terms were dominant because both QI and QK were parametrically of
orderE when contracted with the Weyl tensorCIJKL. We are currently worried about
the possibility that theQ� factor above is also of orderE . Now look at the first term
in (14.158). The Q�QIQK � E3 is contracted in such a way that it instead gives
Q�Q5QK � q5E

2 � E3, which is not problematical. The second term in (14.158)
contracts two Q’s together to give a factor of Q��

��Q� � q2 instead of an E2,
and so it also is suppressed. Next look at the first term in (14.159). There we have
Q�QIQKCI�KL. Up to terms which are suppressed by q5 � E , this is the same as
QJQIQKCIJKL, which vanishes by the symmetry of the Weyl tensor. Finally, look
at the second term of (14.159), which involves

Q�.something/�L: (14.161)

For the dominant terms analyzed in the main text of this paper, the “something” is
made up of factors of Q and QQC. If .something/�L gives a factor ofQ�, then two
of our Q’s that were supposed to be giving factors of E will instead give a factor
of �q2 � E . If .something/�L gives a factor of QNQPC

N�P�, then we’ll get a
suppression as before because of the symmetry of C .

Appendix 4: Large � Behavior of C.�/

For large �, the Nz6 term in the differential equation (14.104a) for � can be ignored
until Nz � 1. At that point, however, we may use the simple large-Nz result (14.110)
for Nz. Substituting this into (14.104a) gives

d2�

d N�2 D �4


�6 � 1

.�3 N�/2
�
�; (14.162)

whose solution is

� D .���3 N�/1=2H.2/

5=6

��2�3 N��: (14.163)
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The late-time behavior � ! 0 is

j�j ' � .5
6
/

�1=2�.�N�/1=3 : (14.164)

Appendix 5: A Back-of-the-Envelope Estimate

In this appendix we give a parametric estimate of the amount of tidal stretching of
the string compared to the size of the stopping distance `stop. Here the only thing
we need to know is that the stopping distance given by following a null geodesic as
in Fig. 14.5 is proportional to a power of the slope dx3=dx5 of that geodesic where
it starts, at the boundary. The more downward-directed one starts the trajectory in
Fig. 14.5, the less distance it will travel in x3 before reaching the horizon.

Now interpret the trajectory of Fig. 14.5 as a trajectory for the center of mass of
a tiny, falling loop of string. Once the string gets far enough from the boundary that
the tidal forces dominate over the string tension, then the string tension becomes
ignorable, and different pieces of the string will fall independently along their own
geodesics, the string stretching accordingly. Imagine plotting two such geodesics,
for the two bits of the string loop that are most separated. The separation of those
geodesics is a measure of the extent of the tidally-stretched loop of string as it falls
towards the horizon. The proper size of the string should start out of order the
quantum mechanical size ˙ of the graviton, which is roughly set by dimensional
analysis in terms of the string tension T as

˙graviton � T
�1=2 � p˛0; (14.165)

x3 x3 x3

l stop

l stop

boundary

z

boundary

z

boundary

horizon

z

z

stopping distance

Δ

a b c

Fig. 14.15 (a) Parallel geodesics in AdS5 in the Lorentz frame where the excitation is at rest
in 3-space. These geodesics maintain a constant proper separation as they fall into the bulk, and
this separation should be thought of as of order the characteristic size (� p

˛0) of the closed
quantum string loop describing the graviton (or other massless string mode). The narrow red loops
are meant to be suggestive of the closed string loop. (b) The same picture boosted to the original
Lorentz frame. (c) A picture of how those geodesics evolve in AdS5-Schwarzschild rather than
AdS5. The early-time behavior is the same as (b). [For classical oscillating string solutions, the
strings depicted in (a) may be thought of as snapshots at moments when the string’s proper extent
in x3 is at, say, maximum (or half-maximum or whatever). Such solutions would similarly oscillate
in the z  z? part of (b) but not in the z � z? part, where tidal forces dominate over tension]
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where ˛0 D 1=2�T is the string slope parameter.
Very close to the boundary, the tidal forces due to the black hole are negligible,

and the closed loop of string is in its ground state. We can set up our two geodesics
above so that, correspondingly, they maintain constant proper separation ˙graviton

near the boundary, where the AdS5-Schwarzschild metric approaches a purely AdS5
metric. To see how this works, imagine making a four-dimensional boost from (i)
the plasma rest frame, in which we create an excitation with large 4-momentum
q� D .!; 0; 0; q3/ ' .E; 0; 0; E/ and relatively small 4-virtuality�q2 � E2, to (ii)
the excitation’s initial rest frame, where the 4-momentum is instead .

p�q2; 0; 0; 0/.
The Lorentz boost factor for this transformation is


 D
s
!2

�q2 '
s
E2

�q2 � 1: (14.166)

In AdS5, the trajectory in the new frame will drop straight down away from the
boundary, as depicted by the dashed line in Fig. 14.15a.

Now consider the graviton as an extended object with proper size ˙ . The two
straight solid null lines in Fig. 14.15a depict the extent of the graviton in AdS5 in
the excitation’s rest frame at early times. In pure AdS5 null geodesics are straight
lines. We parametrize the two solid lines of Fig. 14.15a as

xI D �
C; 0; 0;˙ˇC
C; 1
�

z (14.167)

with ˇC � 1 and 
C � .1 � ˇ2C/�1=2 ' 1. Because of the warp factor in
the metric, these two lines are parallel and maintain constant proper separationp
�x3 g33 �x3 D 2ˇC
CR ' 2ˇCR as a function of the rest-frame time. Setting

this proper separation to be of order the graviton size˙ given by (14.165) then gives

ˇC � ˙graviton

R
�
p
˛0

R
� 	�1=4 ; (14.168)

and (14.167) gives

xI � �1; 0; 0;˙	�1=4; 1
�

z: (14.169)

Now boost back to the original plasma frame using (14.166) to get the early-time

trajectories depicted by solid lines in Fig. 14.15b: xI �
�

.1˙ 	�1=4/; 0; 0; 
.1˙

	�1=4/; 1
�

z, where we have used 
 � 1 (14.166). Then

�.dx3=dz/

dx3=dz

ˇ̌
ˇ̌
ˇ
initial

� 	�1=4: (14.170)
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As discussed before, the stopping distance (which requires a calculation in the full
AdS5-Schwarzschild metric) covered by a null geodesic is power-law related to this
initial slope, and so the difference�`stop in how far the two bits of string travel also
has the same small size (14.170) relative to `stop:

�`stop

`stop
� 	�1=4: (14.171)

Appendix 6: Checking the Penrose Limit: Details

In order to check the validity of the Penrose limit, here we characterize the string by
following null geodesics that roughly trace different bits of string and which deviate
slightly from our reference geodesic. This approximation amounts to ignoring the
tension in the string as in Appendix 5 (for an alternative check of the Penrose limit
outside of this approximation see [37]).

From the null geodesic formula and the metric (14.6), the x3 coordinate for such
geodesics is given by

dx3

dz
D Oq3q

1 � f Oq2
; (14.172)

where

Oq� � q�

!
D .�1; Oq/: (14.173)

Remembering that �x� � x� � Nx�.z/ is the deviation relative to the reference
geodesic, we have

d�x3

dz
D Oq3q

1 � f Oq2
�

NOq3q
1 � f NOq2

: (14.174)

Expand to first order in � Oq3 � Oq3 � NOq3:

d�x3

dz
' � Oq3

.1 � f NOq2/3=2 : (14.175)

Then using (14.85) (and defining u with respect to the reference geodesic Nx),

f R2

z2
d�x3

du
' f � Oq3

1 � f Oq2 : (14.176)
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Since 1 � f Oq2 ' .z4? C z4/=z4h, the combination (14.176) is largest for z . z?, and
the d�x3=du condition in (14.128) requires

� Oq3 � z4?
z4h

(14.177)

for the Penrose limit. Use (14.18) to relate this to the stopping distance:

`stop � z2h
z?
� zh

�
E2

�q2
�1=4
� zh

.1 � Oq3/1=4
; (14.178)

so that

�`stop � zh� Oq3

.1 � Oq3/5=4
� � Oq3 `stop

1 � Oq3
� � Oq3 `stop

z4h
z4?
: (14.179)

Combining (14.177) and (14.179) gives the condition

�`stop � `stop (14.180)

quoted in (14.130).
Now turn to the condition on dv=du in (14.128). The definition (14.77) of v gives

dv D NOq� d.�x�/ D �d.�x0/C NOq3 d.�x
3/; (14.181)

and so we need a formula for d.�x0/. The analog of (14.172) is

dx0

dz
D �f �1 Oq0q

1 � f Oq2
; (14.182)

with expansion

d�x0

dz
' Oq3 � Oq3

.1 � f NOq2/3=2 : (14.183)

Combining (14.175), (14.181), and (14.183), gives dv=du ' 0. We therefore have
to go back and make our expansions to second-order in � Oq. The result is

dv

dz
' � .� Oq?/2

2.1� f NOq23/1=2
� .� Oq3/

2

2.1� f NOq23/3=2
; (14.184)
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and so

f R2

z2

ˇ̌
ˇ̌ dv

du

ˇ̌
ˇ̌ ' f .� Oq?/2

2
C f .� Oq3/

2

2.1� f NOq23/
: (14.185)

The corresponding condition on dv=du in (14.128) is then

f .� Oq?/2 and
f .� Oq3/

2

.1 � f NOq23/
� 1: (14.186)

The first condition is strongest for z� zh and the second for z . z?, giving

j� Oq?j and j� Oq3j z2h
z2?

� 1: (14.187)

Using (14.179), the condition involving� Oq3 becomes

�`stop � `stop
z2h
z2?
: (14.188)

Since z? � zh, this is weaker than the previous condition (14.180).
Lastly, consider the other condition, j�q?j � 1 in (14.187). To estimate j�q?j,

return to the arguments of Appendix 5, but now, in the rest frame, include an initial
proper displacement of the two geodesics in x? of the same parametric size as
the initial proper displacement in x3. Following through the argument, one finds

xI '
�

.1C ˇˇC/;ˇ?; 
.ˇ C ˇC/; 1

�
zwith ˇ? � ˇC. Then

� Oq3 D �q3

q0
D �dx3=dz

dx0=dz
' � 
.ˇ C ˇC/


.1C ˇˇC/
' ˇC

2

(14.189)

and

� Oq? D �
q?
q0
D �dx?=dz

dx0=dz
' � ˇ?


.1C ˇˇC/
' ˇ?



; (14.190)

so that

j� Oq?j
j� Oq3j � 
 �

s
E2

�q2 �
z2h
z2?
: (14.191)

So, using (14.179),

j� Oq?j � j� Oq3j z2

z2?
� �`stop

`stop

z2?
z2h
: (14.192)
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The condition j� Oq?j � 1 is therefore the same as the previous condition (14.188)
and so is also weaker than (14.180).
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